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IX. On the Application of Harmonic Analysis to the Dynamical Theory of the
Tides.—Part 1. On Larrace’s “Oscillations of the First Species,” and on the
Dynamics of Ocean Currents.

By S. 8. Houen, M.A., Fellow of St. Johw's College, and Isaac Newton Student in
the Unaversity of Cambridge.

Communicated by Professor G. H. DARWIN, F.R.S.
Received March 12—Read April 8, 1897.

Tue earliest attempt to subject the Theory of the Tides to a rigorous dynamical
treatment was given by LaPLack in the first and fourth books of the ¢ Mécanique
Céleste.” The subject has since been treated by Airy,* Kervin,t Darwin,} LamB,§
and other writers, but with the exception of the extension of LAPLACE'S results to
include the theory of the long-period tides, but little practical advance has been made
with the subject, in spite of the enormous increase in the power of the mathematical
resources at our disposal, and the problem has reinained in very much the same
condition as it was left by Larvace.  This arises no doubt partly from the difficulties
inherent to the subject, but partly from the form in which the theory was originally
presented by LAPLAcE in the * Mécanique Céleste,” which has been described by Atry
as “ perhaps on the whole more obscure than any other part of the same extent in
that work.” The obscurity complained of does not however seem to have been
entirely removed by LAPLACE's successors, and it was the fact that every presentment
of the theory with which I was acquainted offered some points of difficulty, that in
the first instance led me to take up the problem ab nitio, partly with the purpose of
allaying the doubts which had arisen in my own mind as to the validity of certain
approximations employed by Laprace and adopted by his successors, and partly in
the hope that I might be able to extend the results of LAPLACE to meet more {ully
the case presented by the circumstances actually existent in Nature.

Up to the present I have been unable to free the problem to any extent from the
limitations which have been imposed by previous writers, and consequently it would
be futile to claim that the results T am now able to put forward materially advance

# ¢Eneye. Metropolitana’; Art., ¢ Tides and Waves,” Section IIT.
+ ¢ Phil. Mag.,” 1875, vol. 50.
+ ‘Tncyc. Britannica’ (9th edition) ; Art., “ Tides.”
§ ¢ Hydrodynamics,” chapter viii.
MDCCCXCVIL—A. 2D 20.7.97
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202 MR. . HOUGH ON THE APPLICATION OF HARMONIC

our knowledge of the tides as they actually exist; but I venture to hope that these
results, as applied to the oscillations of an ideal ocean, considerably simpler in
character than the actual ocean, may prove of some interest from the point of view
of pure hydrodynamical theory.

In §§ 1-4 I have devoted cousiderable space to the formation of the dynamical
equations. The equations obtained agree with those used by LapLace, and
consequently it may be thought that I have been unnecessarily diffuse over this
part of the subject. My apology is that the questionable, if not erroneous, reasoning
which has often been assigned for the various approximatiors introduced seemed to
me to warrant a very minute examination of the formation of these equations. An
analytical treatment, such as that I have used, seems to me to be the only safe
method of procedure to ensure that the approximations do not involve the neglect
of any terms which may be of equal importance with those retained, many of which
are extremely small. The method adopted follows LarrLace in so far as it consists
of a transformation of the general equations of oscillation of a rotating fluid. I
trust however that these general equations in the form I have used, which seems
to be the simplest form to which they can be reduced, may be found less “repulsive”
than those employed by LaAPLACE.

§ 5 deals with the integration of these equations. The forms of solution discussed
in the present paper are those which are symwmetrical with respect to the axis of
rotation. The types of oscillation represented by these solutions have been named
by Laprace, « Oscillations of the First Species,” but he omitted to discuss them in
detail on the grounds that the oscillations of such character, which might be
expected to exist in Nature, would be modified to such an extent by friction that
they would be far better represented by the old “equilibrium theory,” than by a
dynamical theory which failed to take due account of the action of friction. The
tides in question will be of long period, the shortest of the periods being half a lunar
month in duration, but Professor DarwiN was, 1 believe, the first to call attention
to the fact that this length of period will hardly be sufficiently great to render the
effects of friction of such paramount importance, and hence he added to the work of
Larrace a discussion of the long-period tides when not subject to frictional
influences. 1 have recently attempted to estimate the effects of friction on the tidal
oscillations of the ocean, and the results at which I have arrived fully confirm
the view of Professor DARWIN as to the small influence of friction on the lunar-
fortnightly tides, and render it highly probable that the eﬂc'ects wﬂl be almost
equally slight on the solar long-period tides.

The method of integration I have employed differs from that used by DArRwIN, my
aim having been to express the results by means of series of zonal harmonics instead
of by the power-series obtained by him. The advantages of this are two-fold; firstly,

¥ In a paper read before the London Math. Soc., December 10th, 1896.
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ANALYSIS TO THE DYNAMICAL THEORY OF THE TIDES. 203

it allows of our including in our analysis the effects due to the gravitational attrac-
tion of the water ; and secondly, the convergence of the series obtained will be much
more rapid. The latter circumstance is of particular value, as it has enabled me to
treat with considerable success the problem of the free oscillations of the ocean.

- The general problem of the small oscillations of a rotating system possessing a
finite number of degrees of freedom has been discussed by THOoMsON and TAtr ;* but
the extension to meet the case where the number of degrees of freedom is infinite
involves analytical considerations of some delicacy. As a rule, the transition from
the case of a system with finite freedom to that of a system with infinite freedom is
effected by the employment of “mnormal coordinates,”t and the chief difficulty in the
solution of problems relating to the vibrations of the latter class of system consists in
the discovery of these coordinates. The researches of THOMsON and TAIT just men-
tioned shew however that in a rotating system these normal coordinates do not
exist, and hence that the methods ordinarily employed to deal with the oscillations
of a system about a state of equilibrium will no longer suffice for the treatment of
our problem. In most ““ gyrostatic” problems which have been solved hitherto,] the
solution has been obtained by means of a system of quasi-normal coordinates. When
such coordinates exist, only a finite number of oscillations of certain particular types
are possible, and, by constraining the system to vibrate in one of these types, we may
treat it in the same manner as a system with a finite number of degrees of freedom.
The period-equation for the free oscillations of an assumed type will then only possess
a finite number of roots, and will consequently be an algebraic equation usually
most readily obtained in a determinantal form. It is shewn at the end of § 5 that
the coordinates we have used possess this property when the depth of the ocean
follows certain restricted laws ; but in general no such quasi-normal coordinates exist,
and whatever coordinates be employed, the displacements in any of the fundamental
modes of vibration can only be expressed by means of an infinite number of such
coordinates. The most advantageous choica of coordinates will then be that which
leads to most rapidly converging series. :

As however the oscillations of an assumed type can only be explessed by an infinite
series of coordinates, it follows that an infinite number of oscillations of any assumed
type must he possible, and that consequently the period-equation for oscillations of
this type will have an infinite number of roots and will therefore be transcendental
instead of algebraic in character. It is possible that the transition from systems
with finite freedom to systems with infinite freedom may be treated with advantage
by the employment of determinants of infinite order (as a means of expressing the
transcendental period-equation), after the manner introduced into analysis by

* ¢ Natural Philosophy,” Part 1., § 345.

+ RavruieH, ¢ Theory of Sound,” vol. 1, § 87.

T Of. PoiNcari, ¢ Acta Mathematica, vol. 7 ; Bryax, ¢ Phil. Trans.,” 1889.
2 D 2
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204 MR. S. S. HOUGH ON THE APPLICATION OF HARMONIC

G. W. Hrry, in his ¢ Researches on the Lunar Theory ;" but in the present instance
we are able to avoid the difficulties involved in the use of these infinite determinants,
in that the forms of determinant which occur are those which are associated with
continued fractions.

§ 6 deals with the analytical discussion of the deduction of the period-equation.
The method is based on a paper by Lord Krrvin,tin which the author defends the
procedure of LAPLACE against certain allegations to which it had been subjected
by Arry, but I have endeavoured to present the arguments in a somewhat different
light, so as to bring out more clearly the analogy between our problem and the
general problem of vibrating systems with finite freedoin.

In §§ 7-10 I have given illustrations of the method of solving the period-equation
numerically, and of the subsequent determination of the type of motion for the
different fundamental modes. As the ground covered in these sections is almost
entirely new, I have devoted considerable time and labour to the arithmetical
determination of the periods and types of the principal oscillations for a system
comparable with the earth in magnitude. The results are tabulated in these
sections.

§ 11 deals briefly with the forced tides of long period due to the moon in an ocean
of uniform depth. The results agree with those previously obtained by other
methods, but differ from them in analytical form. In § 12 I have given illustrations
of a means of extending the method of numerical computation to cases where the
law of depth is less restricted in character.

The consideration of forced tides of very long period, dealt with in § 18, points to
the existence of free oscillations of infinitely long period. This, T believe, was
first noted by Professor Lams,}f but the application of the dynamical equations for
the tides to the treatment of these free oscillations has not been previously carried
out. The types of motion in question appear to be of considerable importance, as
they throw light on a phenomenon which in the past has been the subject of
considerable controversy. The difficulties which have been met with in attempts to
account for the existence of ocean currents all seem to me to arise from an over-
estimate of the eflects of viscosity on the motion of the sea. The large-scale ocean
currents have been attributed by Sir Jonny Hurscuer§ and others entirely to the
influence of the ““trade” and other prevailing winds, which give rise to slow steady
motions vhich, in the absence of friction, would remain permanent even were the
originating cause entirely to cease. The ditficulty in accepting this view arises from
the assumption that such currents would succumb to the influence of frictional

# ¢ Acta Mathematica,” vol, 8.

t ¢ Phil. Mag.,” 1875, p. 227.

I ‘Hydrodynamics,” § 198.

§ ¢ Physical Geography,” §§ 57-60.
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ANALYSIS TO THE DYNAMICAL THEORY OF THE TIDES. 205

resistances in the course of a few days.* If this assumption be correct it will of
course be necessary to invoke some more constant cause than the fickle winds in
explanation of ocean currents, but unfortunately the causes put forward by the chief
opponents of the wind theory, namely, the differences of density arising from
differences of temperature, salinity, &ec., though no doubt satisfying the criterion of
being more constant in their action, seem to be equally ineffective in maintaining the
currents against such large resistances as would be required to destroy the currents
due to the winds in a few days. 1f, on the other hand, the period of subsidence of
the free current-motions is to be reckoned rather by years, these motions could not
fail to be excited and maintained by such causes as the winds even against the
action of friction.

Tn § 14 T have dealt with the dynamics of ocean currents on the supposition that
they are of the nature of free steady motions (probably maintained by a variety of
causes), and that the influences of viscosity are extremely small. A remarkable
result is the extremely restricted character of the possible forms of steady motion as
contrasted with the case where the ocean covers a non-rotating globe, in which latter
case the possible forms of steady motion are to a large extent arbitrary. It is found
that if the density of the water is uniform, the only forms of steady motion possible
when the depth depends on the latitude alone are those in which the water always
moves along parallels of latitude, while in general the paths of the fluid particles
coincide with certain lines depending only on the distribution of land and water and
on the configuration of the ocean bed. The equation by which these lines are defined
is of an extremely simple character, and from it we could at once trace out the forms
of the stream-lines on a chart if we had a sufficient knowledge of the configuration
of the ocean bed. The equator will always be one of these stream-lines, and herein
we seem to have the explanation of the fact that the ocean-currents always tend to
set along the equator, but in other respects it is shewn that the effects of variations
of density will seriously interfere with the simple laws which must hold so long as
the density is uniform.

The importance of the earth’s rotation in influencing ocean-currents has long been
recognised by physicists, but I am not aware that any previous attempt has been
made to investigate this influence mathematically. The numerical results obtained
in § 15 are interesting, as showing how a cause, which on a non-rotating globe could
not give rise to any appreciable currents, may be rendered highly effective in main-
taining currents as a consequence of the rotation of the earth.

In attempting to account for ocean currents, the real question at issue is: How
far are the suggested causes capable of maintaining currents against the action of
Jriction 2 'To answer this question an investigation, either mathematical or experi-
mental, as to the effects of friction is essential. Such an investigation I have endeavoured

* Maury, ¢ Physical Geography of the Sea,” § 93.
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206 MR. 8. S. HOUGH ON THE APPLICATION OF HARMONIC

to supply in another paper, but mathematical difficulties have compelled me, in
treating of friction, to omit from consideration the important influences due to the
rotation. We have already called attention to the fact that the free steady motions
on a non-rotating globe are far less restricted in character than those on a rotating
globe, while, in that the latter essentially viclate what appears to be a necessary
condition when the water is viscous, namely, that there can be no slipping at the
bottom, it seems to me to be probable that even the limited forms of steady motion
here dealt with would be no longer possible if the water were viscous, but that, if
they were started by any meaans, they would al once give place to periodic motions
of comparatively short period.t This conclusion has been forced on me by the
apparent impossibility of satisfying the equations of motion of a viscous ocean on a
rotating globe by means of slowly declining current-motions. If such should be the
case, it follows that no stable currents can exist without variations in the density of
the water. As however I have not as yet been able to support this view by
anything approaching a rigorous mathematical treatment, the question must for the
present remain open.

§ 1. Differential Equations for the Vibration of a Rotating Mass of Liquid.

Suppose we are dealing with the small oscillations of & mass of liquid about a state
of steady motion consisting of a rotation as a rigid body with angular velocity » about
a certain axis.

Take this axis as axis of z, and refer to a set of rectangular axes rotating about it
with uniform angular velocity . Then, in the steady motion supposed, the fluid will
have no motion relatively to these axes.

Let u, v, w denote the relative velocity-components at the point @, y, z due to the
small oscillations.  The actual velocity-components parallel to the instantaneous
positions of the moving axes will then be

U= oy, U4 wr, w,

and, therefore, if we suppose the amplitude of the vibrations sufficiently small to allow
of our neglecting squares and products of the small quantities u, v, w, the differential
equations of motion of the liquid may be written in the form]

* TLoc. ¢it., ante.

t The condition that there can be no slipping at the bottom will reduce the number of degrees of
freedom of the system, and hence we may anticipate that certain types of motion which were possible
before this condition was imposed will no longer exist afterwards.

1 Basser, ¢ Hydrodynamics,” vol. 1, p. 22,
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ow 0 r)
aé — (?) -+ w.’lﬁ)’ —_ 0l = a?“ (V —p/p),
ov S
5 o (v—oy)+ ou= é;(\/ — p/p),
Ow S
n T (V'—=p/p),

where V’ denotes the potential of the bodily forces acting on the liquid, p the fluid
pressure, and p the density.
If now we put

Y=V —pp+Le® (@®+9y*) +const. . . . . . . (1),
the above equations reduce to
ou . i Q\_]/‘—\
o T EY= gy
ov o
% + 2wu = a—l/— e (2),
oo
ot 0

Aafxf + B‘ + 5; = O . . . . . . - v . (3).

These equations, originally given by Poixcark* suffice, in conjunction with
certain conditions which must hold at the boundary, for the determination of the
four functions u, v, w, ¥ They are perbaps the simplest equations of which to
make use when dealing with the oscillations of a mass of liquid of finite extent in
three dimensions, and, for this purpose, they were first solved by PoiNCARE in a
form adapted for satisfying boundary-conditions at an ellipsoidal surface, while
additional applications have been considered by Brvan,t Love] and myself§ The
possibility of solution in each of these cases however turns on the fact that it only
required to satisfy boundary-conditions at a single ellipsoidal or spheroidal surface,
whereas, in the problem presented by the tides, it is necessary to satisfy conditions
at two surfaces, namely, the ocean bed and the free surface of the ocean.

There is, however, a feature attached to this problem which enables us to surmount

% ¢ Acta Mathematica,” vol. 7, p. 356.
+ ¢ Phil. Trans.,” 1889.

t ¢ Proc. Lon. Math. Soc.,” vol. 19.

§ ¢Phil. Trans.,” 1895,


http://rsta.royalsocietypublishing.org/

A
N
. 0

/

e

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

L\

3

\

y i
///

A

Py

5

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

208 MR. 8. 8. HOUGH ON THE APPLICATION OF HARMONIC

the difficulties arising from this cause ; the fluid which constitutes the ocean may be
regarded as a thin layer distributed over an approximately spherical surface, 2
circumstance which enables us to reduce the number of our independent variables
and to treat the problem as a two-dimensional one.

Before proceeding to the transformation of our equations, let us examine them in
the form in which they are given above. If we suppose the system is executing
a simple harmonic vibration in period 2a/X, we may put u, v, w, ¢ each proportional
to ¢, and therefore replace 0u/0t, &ec., by @\, &e.  Thus the equations (2) give

NG — Dot = o )
o
. c axlf
N+ 200 = o
. 0
= (a\{r .

Now in an important class of oscillations, viz., the tides of long period, the value
of A will be small compared with that of ; while for another elass of motions, viz.,
the steady ocean-currents, we must suppose A absolutely zero. 1In these cases, if we
retain only the most important terms, the equations of motion take the approximate
form

_ v _ _
— 200 = 3 2ou = P 0= N

Hence, applying the operators 0/0z to the first two, and making use of the third,

we find
oufoz =10, ovfoz= 0.

Likewise also from the equation of continuity,

x- T w Ty T 0wy Oy ow

ow _ ow v 1 <82\[f_ O > — 0

20

From this we see that in the case of tides of very long period the velocity of the
fluid particles is approximately the same at all points in the same line parallel to the
polar axis, while in the case of the ocean-currents this is rigorously the case.

Now in order to effect the transformation of the equations of motion, it has been
assumed by Larrace and his followers that, on the analogy of “long waves” when
there is no rotation, all fluid particles which are at one instant in a vertical line
will remain in such a line, This assumption appears to require some modification in
the case of our rotating system. We shall see hereafter however that the assump-
tion in question will not lead to appreciable error, provided that the depth of the
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water is small in comparison with the radius of the solid globe on which it resides, a
hypothesis which will certainly be applicable in the case of the earth.

§ 2. The Boundary-conditions.

Betore proceeding with the approximations which we propose to employ hereafter,
let us examine the boundary-conditions to which the functions u, v, w, ¥ are subject
in the general case. .

Suppose the fluid resides on the surface of a solid nucleus which is constrained to
rotate with uniform angular velocity w about the axis of z.  We introduce this con-
straint so as to avoid the complications resulting from the reactions of the fluid
motion on that of the nucleus. Since in the case of the earth the mass of the ocean
is exceedingly small compared with that of the solid parts, such reactions would be
very minute, while for most of the more important types of oscillation they would not
exist at all. In such types the problem is not affected by the introduction of the
constraints. The boundaries of the ocean where it is in contact with the solid
nucleus may then be regarded as fixed relatively to the moving axes Oz, Oy, Oz, and
the condition to be satisfied at these boundaries is that there is no flow of fluid across
them. Denoting by /, m, n the direction-cosines of the normal to the surface, this
condition is expressed analytically by the equation '

‘[Zu—l—mv—]—mv]:() e (4).

Next, let us examine the boundary-conditions at the free surface. Let I, m, n
denote the direction-cosines of the normal to this surface in its undisturbed position,
and let  be the distance between the displaced surface and the mean surface
measured along the normal to the latter. Then we may equate the velocity at the
mean surface in the direction of this normal to the rate at which { increases ; thus at
the undisturbed surface we have |

[lw + mv 4+ nw]=20Llct . . . . . . . . (5

Lastly, we must express the condition that the pressure at the actual free surface
is zero (or constant). Now if dn’ denote an element of the normal to the undisturbed

~ 0 . .
surface, and p, 5% denote the values at this surface of the pressure and its rate of

increase along the normal, the pressure at the actual surface is

- o ‘ ,
PHLE . (6)

and this we have seen is to be equated to a constant,
MDCCOXCVIL,—A. 2 E
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210 MR. 5. 8. HOUGH ON THE APPLICATION OF HARMONIC

But by definition of ¥ we have

plp = const + V' 4 $a® (2 + %) — ¢
= const + Vot +v+s @+ =y . . . . . (7)),

where V'; denotes the potential at @, 7, z in the steady motion, v the potential due
to the attraction of the layer of fluid contained between the actual free surface and
its mean position, and v the disturbing potential, which may be regarded as due to
some external attracting system.

Since in (6) op/on’ is already associated with the small tactor £, in calculating dp/on/
we may omit all small quantities of the order , and thus replace this expression by
its value in the steady motion. But from (7) we have in this case

plp = const 4= V'y 4+ $o?* (¥ 4 o),

whence

D _ O v 1 (g
= o =gy WV e (2 )l

Now, since the free surface of the ocean must be an equipotential surface, the
resultant of gravitation, including centrifugal force, must be perpendicular to this
surface.  Denoting by ¢ its value, we have

2 -
9= = s Vot 3o (@ 4 %,
and therefore

v,
vpan,_—t(/,,,,....,.(ti).

Introducing the values of p, gj} from (7), (8) into the expression (6), and equating

the latter to a constant, we find
[Vio+ v + v+ fo® (0 + 9?) — | — gL = const,
or, ou equating periodic parts to zero,
=0 —gltv . . . . o (9)

where the bars are used to denote surface-values at the undisturbed free surface.
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§ 8. Transformation of the Equation of Continuity.

We proceed now to the transformation of our equations into a form analogous to
that used by LAPLACE, dealing first with the equation of continuity.

Let us refer to a system of orthogonal curvilinear coordinates «, B, v, and suppose
that the undisturbed surface of the ocean coincides with one of the surfaces y=const,
say ¥ = Yo

On the surface y = vy, take a small parallelogram PQRS, bounded by curves of the
systems a = const, 8 = const.

Through the sides of this parallelogram draw the surfaces & = const, 8 = const, to
meet the inner surface of the ocean in the quadrilateral P'Q'R'S” and the distorted
free surface in pgrs.

The surfaces a = const, B = const, are, of course, supposed to be in rotation with
angular velocity w, in common with the axes Oz, Oy, Oz. Let U, V, W denote the
relative velocity-components at the point («, B, y) parallel to the normals to the
surfaces of reference and in the directions in which «, B, y respectively increase, and
let y = vy,, where y, may be regarded as a function of «, 8, be the equation to the
surface of the solid earth. '

Let hy, hy, hg be parameters associated with our orthogonal system of coordinates,
such that the line-element ds is given by

ds? = da/hy? + dBfhe? + dy*/h2.

Then the volume of liquid which flows in a unit of time across the face & = const
of an elementary parallelopiped whose adjacent edges ave da/h, 38/hy, Sy/hg is

But if in the above figure we suppose that «, B, y, are the coordinates of P, and

that PQ = 88/hy, PS = 8a/h,, the total flow of liquid across the face PP'Q’'Q will be
28 2 '
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212 MR. §. 8. HOUGH ON THE APPLICATION OF HARMONIC

found by integrating the above expression with respect to y between the limits y=1y,,

Yy =7
Thus, the rate at which liquid is entermg the elementary volume PR’ across the
face PQ’ is expressed by

B (Ufhhs) dy

If in this expression we change « into @ + 8, we shall obtain the rate at which
fluid is ﬂowmg in the p031t1ve direction across the face SR’; theremre the rate at
which fluid is leaving the element, across the face SR is expressed by

B[ (U ) dy + 8598 5. { [ (Unl) dy |

In like manner, the rate at which fluid enters across the face PS’ is
Yo
S [ (Vi) dy.
and that at which it escapes across the face QR is
Yo S 0 Yo ’ ST
S (Vo) dy + 82 38 55 { [V /o) ozy} :
"1 818 no

Lastly, in virtue of the boundary-equation (4), which holds at the surface
P'QYR'S/, the rate at which fluid enters over this surface is zero, while in virtue
of (5), which holds at the surface PQRS, the rate at which fluid escapes over the
latter surface is expressed by

Soc B aé’
hy hz o

Now the total amount of liquid contained within the elementary volume under
consideration is constant, and therefore, if we equate to zero the sum of the rates at
which fluid is entering over all the six faces, we obtain the equation of continuity in
the form

— 8u3p 2 {["wan Iy} — 338 4 { [ (V) d»),} — i —Sf gf =0,

or

2? = Puhy [ H (U/hohs) dy} + aig“ (V/hghi) dYH .« (10).

So far no approximation has been made other than that involved in supposing the


http://rsta.royalsocietypublishing.org/

A A

I ¥

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A A

Vo

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ANALYSIS TO THE DYNAMICAL THEORY OF THE TIDES. 213

vibrations small. If we now suppose that the depth of the water is small, so that
Yo — v1 is a small quantity, the above equation admits of considerable simplification.
Using square brackets to denote values at the mean surface y = y,, we have, by
TavLOR’s Theorem,

(o
Ulhghy = [U/]?’zhaj + (¥ — 7o) [@(U/hzhs)] +.

whence

. "ia'
Ll (U/hghs) dy = [Ufhohy] (yy = v1) — 3 (yo — ) Léfy“ (U/hzh%)] +...

Now, if y, = v, be small as supposed above,* even though ;y (U/hyh) is finite, we

may omit all the terms on the right except the first. This amounts to supposing
that the horizontal velocity is sensibly uniform throughout the depth, not on account
of the small value of its rate of variation, but on account of the small distance
through which this variation can take effect, a supposition which is not inconsistent
with the results of § 1. Hence, on neglecting small terms of the order (y, — v,)?
we have

| K:<U/h2/ls) dy = [U/hohs] (v — 71);

and, in like manner,

Yo .
L (V/hshs) dy = V/hgh,] (')’0 - "7)-

Let % denote the depth of the ocean at the point («, 8). Then, provided A be
small in comparison with the radii of curvature of normal sections of the surfaces
a == const, B = const, y = const, we may put

Yo~ N

Yo =N

[75]

with errors of the order of the square of the ratio of % to these radii of curvature ;
and therefore

["(U 1) dy = KO,
[ : (V/hgh) dy = V[,
Substituting these values in (10), we find

where we have now used bars to denote surface values.

* The standard of comparison is considered in the next section,
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214 MR. S. S. HOUGH ON THE APPLICATION OF HARMONIC

If we suppose that the free surface of the ocean is a spheroid of revolution about
the axis Oz, it will be convenient to refer to a system of spheroidal coordinates w, ¢, v
related to 2, 9, z by the equations

5= /(1) /(1 = ) cos g,
y=c,/(1 +v*) /(1 — p?)sin ¢,

%= Cvp.

The line-element ds for this system of coordinates is given by
ds = +“)d W (L) (1 — ) + S g,
whence, if we identify p, ¢, v with «, 8, y respectively, we have

..].'. —_ crlé(f_ilf"j), 71; —_— V/(l + V.‘?-) ‘/(1 __“2>, 0\/(1/ +,LL

by (1= VA )

and, supposing that » = », is the equation to the free surface, the equation (11)
becomes

ok _ _ L DA - S S A S
o e/ (B + vd) 3/»{\/(1 ’u)hU} e/ (v + 1) a(b{ ’(1—/&"}

We have already neglected on the right small terms of the order 4 compared with
those retained ; we now propose to make the further hypothesis that the spheroidal
surface of the ocean is of small ellipticity e. In this case ¢ will be small and v,
large, in such a manner however that ¢y, is finite and equal to the polar radius a ;
further 1/v,* will be approximately equal to 2e.  Hence we find

A=l e (i st e o

where the terms omitted on the right are of order £ and of order e compared with
those retained.

§ 4. Transformation of the Dynamical Hquations.

Let @ denote the inclination to the axis of z of the normal to the surface » == const,
through any point ; then the direction-cosines of this normal will be

sin @ cos ¢, sin @ sin ¢, cos 0
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and the direction-cosines of the normals to the surfaces u = const, ¢ = const, will be

— cos 0 cos ¢, — cos ¢ sin ¢, sin 0,
— sin ¢, cos 9, 0,

respectively. Hence we have

U= —(ucos¢ - vsin¢)cosd 4 w sin 6,
V = v cos ¢ — u sin ¢,
W = (v cos ¢ + v sin ) sin § + w cos 6,
from which we obtain
— U cos @+ W sin 0 = u cos ¢ + v sin ¢.
Again |

LWy
o

o Oy

hy == B = T O ¢ cos  — %‘Tj s»in ¢ cos O -+ =5 sin 6,

and therefore from (2), we find

I, ?% (gi; — 2w’l}> cos ¢ cos 0 — <~f + Zwu> sin ¢ cos 0 + " sin @
— E‘ + 20V cos 6.
Sumilarly
hy a‘i %‘Z cos ¢ — %:If sin ¢
= <%;i -+ 2wu> cos ¢ — <%2~ — Zwv\ sl ¢
= %\: + 20 (W sin 0 — U cos 0),
and
fig %\II{ = "8 sin 6 cos ¢ + 8 sin 0 sin ¢ + ——\Ii cos 0
= <8u 2w1;> sin @ cos ¢ + < + 2wu> sin 6 sin ¢ + vét cos 0
oW

= 2wV sin 6.

Allowing for the differences in the notation, the three equations just obtained agree
with those given by Professor Lams.* If we suppose U, V, W, 4, each proportional
to ¢™, they may be written

* ¢ Hydrodynamies,” p. 344.
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21‘(5 MR. 8.8, HOUG-H _ON THE APPLICATION OF HARMONIC
AU + 26V cos 0 =, ‘é"’, 1
IV — 20 (U cos 6 — W sin 6) = &, a:: L L (1)
AW — 26V sin 0 =,

o' J

The equations in the form we have just written them will hold good whatever be
the depth of the ocean or the ellipticity of its surface. We now proceed to introduce
approximations similar to those of the last section.

In the first place we have, as in §2, W = %C ,and this by (12) we see is of the order

liJa compared with U or V. Hence, omitting terms of the order A/, and of order e,

compared with those retained, the equations (13) take at the surface the approximate
1 ) q pPp

{forms
_ ™
AU + 20V cos 8 = V=) Q\k,
@ O
AL__aiIE'\ L. (14
IV — 20U cos § = \/(l-mp,) 84) e (14)
— 2wV sin 0 = ‘!f

where, in conformity with the notation of § 2, we have denoted by &y/on’ the rate of
variation of s in the direction of the normal to the surface of the ocean.

From the equations (14) it appears that oy/on’ is a quantity of the same order of
magnitude as /e ; also if we apply the operator iy~ aa-~ to each of the equations (13),
we shall obtain equations which enable us to express dU/dn’, 9V/on', oW /on’ in terms
of U, V, W, and the surface-values of ¢ and its differential coefficients. A little
consideration will show that in general oU/on’, oV/on', W /on' must be of the
order U/a, V/a. I

Now the approximations introduced in the last section will hold good provided

that we may neglect

0 =7 55 (Ut | and vy = 32} 5 (V)|

in-comparison with [U/hoh,], [V/hsh\]; or, in our present notatwn that we may
'neglect

P+ p?) (L — ;“‘ ) U} and h’ A {\/(163”; ;F;n()lvﬁ_ vz)}
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in comparison with

U/ (o )/ (1 = ), Vet
0 V(L= /(L + w)

But we have seen that oU/on’, 0V/on" are of the order U/a, while

0 (4 2 2 0 [0+ )
on’ L ‘/(V + w7 on’ {\/(1 + vﬁ)}

are of the order ¢%/u.
Hence

2 3 PO+ )V
R I R e R B T

are both of the order

= N
U - 621/'0.
[4

The approximations will therefore be admissible, provided %/a is a small quantity,
that is, provided that the depth of the ocean is small in comparison with the radius
of the solid earth, a hypothesis as to the validity of which there can be no doubt.

Returning now to equations (14), and solving for U, V we find

T — 20y — _ V(A =)oV 2weos 0 Oy
U (N — do?cos? ) = — i\ - aIu.|___a\/(l ~ 5 9

Y O\ 2 e — e M) @ — ._v,__?}*__ 8__(;;
V(N 4w? cos® f) = — 2w cos 0 - T/ (=) 3

But we have rigorously
» \/ (V()?' -+ 1)

cos 8 = )
K Vv )

and therefore, with errors of the order of the ellipticity, we may replace cos @ by u.
Hence, finally, we obtain the values of U, V with errors of the order //a, ¢ compared

with their true values in the form

U .: ’L7\,\/ (1 — u? oy 2wp 8«7{ W

T ot o T ']
l} . (15).
|
i

a (W —4do%?) op | ay/ (1= p2) A\ — do? 0¢

V= — Zopy/ (1~ 1) % o 5%

a(\ —4do%?) Ou /(1 —p?) WV — 40%?) O
MDCCCXCVII,—A. 27F
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218 MR. 8. 8. HOUGH ON THE APPLICATION OF HARMONIC
Substituting these values in the right-hand member of (12), we obtain

o D[N B 2ok 3G
hal = { A — 4o Op TN — do? agb}

o [ 2euh i 3 |
+a(‘¢{ — do'p aﬁ(l ) (v = 4ww>8?£} coeoe (16),

Hence, provided that A be not equal to zero, we have

1
B do¥? Op (N — do’?) O
0 2euh a\_p_ 7 o
to e A w0 (D)

This equation, in conjunction with the pressure equation (9) of § 2, serves to determine
Y, ¢ in terms of p, ¢. It is equivalent to the well-known equation used by LArrLACE
in the ‘Mécanique Céleste’* Omitting from consideration for the present the types
of motion defined by A = 0, we propose in the present paper to discuss only those
solutions which are symmetrical with respect to the axis of rotation. In order that
such solutions may exist, we must suppose that %, ¢ are independent of ¢; the
equation (17) will then reduce to

O [h(l—=p) o) _ , 5, .
éﬁ{fz-/ﬁ aﬂ}_mwg Coo o oo (1),

where for brevity we have put M20 = f.

§ 5. Integration by Means of Zonal Harmonics.

Suppose that { is expressible as a series of zonal harmonics of the form

(=3 C,D,(n).

n=1

| Neglecting the ellipticity of the surface, we may at once write down the value at
the surface of the potential due to this distribution ; we have, namely,

- darpa
v o= ,;21271 _i 1 CMPH (,u/):

¥ Part I, Book 1V, § 8.
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where the density p is expressed in gravitational units. But if o denote the mean
density of the earth as a whole, including the ocean, we have, with the same
degree of approximation,

and therefore

n=00 B 3p
=5 i 90

As this only involves the ratio p/s, it is independent of the unit of mass employed.
Next suppose that the surface-value of the disturbing potential can be expressed
by means of the series
P ().

Then equation (9) of §2 gives

p=0v—gl+v

= =31 5 %) 0= ]2 o)

or, if we write for brevity,

|

_ 3
In = <1 (2n+1)<r>’ C e (19),
r, = Yo — gnou
we have
=3P, () . . . . . . . . .. (20).

Now, from the equation

d

d/x,{(l —,uﬁ) i }—l—n(n-l-nl)Pﬂ:O

which defines the zonal harmonics, we find

1-—pd CflP” = —n (n41) rPﬂ dp.

Hence, if we integrate (18) with respect to u, we obtain

h(l — u?) O
}2_5)8‘1’—4002 220[]?7,(2/&

= A — 4d%0 2(1—”‘2)2n(n+1) i’
where A is an arbitrary constant, which may be seen to be zero by puttmg p=xL
Therefore

2 2
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220 MR. 8. &. HOUGH ON THE APPLICATION OF HARMONIC

. (’}_ ¢ Cn
bt =) gl = — et (1= )3 s (2 = ) o

But, by well known properties of the zonal harmonics, we have

dP,

~_nm+nj”@

n (’}’b -+ 1) [ dP,L_H dPn-] d
9 + 1 j dp du ) H*

(I —p

n(n + 1)
= o+ 1 (Pﬂ+1' - Pﬂ—l)

no arbitrary constant being necessary since both sides vanish when p=1; and
therefore

ar, " (n + 1)
(fg - f“) dp = ( 1) (l,u 9 4+ 1 (Pﬂ-I-l 72-—])
= (f2=1) ar, _n(n+1) 1 (d‘PLQ ar,\ 1 [dP, dP"*gj
- Vdp T 241 2043\ du T dp)” 2a—1\du ~ du )’
whence
) ar, _ (1) dDPyy,
(f ®) 4, du T (20 + ])(271 + u) du
+ 9 2n(n + 1) c_ZII,, _ n(n + 1) AP,y
(2n — 1) (2n + 3) (2n—1)(2n + 1) du
This relation will hold good when n = 1, provided we replace dP_,/du by zero.
Thus the right-hand member of (21) is equal to
= C, . Fr—1 9 K C dar,
2.2 —_— S e S n+9 -
1070’ (1= %) 2' {:(27@ 3)(2n—1) C. <n (n+1) + (2n—1) (2n+ J)) + (2n+ 3) (20 4+ ’))] du "

The left-hand member may in virtue of (20) be written in the form

— iz,l_)ﬁ Cus f -1 2 Cusg
_2 {(9n-~3)(271-——1) C. <n(n—|—1) + (2n —1) (2n+3)> + (2n + 3) (271—{—5)}'


http://rsta.royalsocietypublishing.org/

|
P

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ANALYSIS TO THE DYNAMICAL THEORY OF THE TIDES. 221

Hence, provided % be constant, the two members will be identical, if for all positive
integral values of n we have '

Coy [ fr-1 2 Cosg Rl o
(2n— 3) (2n—1) " (% (n+1) + (2n —1)(2n— 3)) + (2n+3) 2n+5) = 4o (22),

it being understood that ) == 0, C_, = 0.
This is on the hypothesis that the depth is constant ; a more general hypothesis
would be to suppose that & is of the form
k4101 —p?)
where £ and [ are constants.
Assuming this form for 4, the left-hand member of (21) becomes

d P, dap,

H1 = )2 DI (1 — k) 5

n

which, by the properties proved above, is equal to

ap,
ﬂd

— (1= [ (n — 2) (n— 1) T, — 2n(n + 1) 1 (n + 0)(% + 3) ]dPn .

k(1 — p?)=T

Identifying this with the right-hand member, we obtain

)
A

a
\

/
S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Cae S 2 Cuyy
(2n — 3) (%n —-1) G <n(n + 1) + (2n — 1) 2n + 3)> + (2n + 3) (20 + 5)

B N T e N | T 11 (S | R (X T AL L Y
T 4ota® w%ﬂ{@n—%)(ln 1) "2 (2n—1)(2n+3) T+ (2n+3)(2n+-5) ”*2} (224).

On introducing the values of T, from (19), equations (22), (224) may be written

Cz.-g —C f2 —1 + 2 . kgn \
(2n —3)(2n — 1) "\n(n+1) ' (2n—1)(2n + 3) 4w%9)
Cn+2 h’Yn

-+ = T . o o . o . . .
T o+ 3) (2n + ) da'a? (23),

o= (2’1’?, — 3) (2," . 1)

{(J” =1 4 20 =n(+ D) lgfba’} kg, }

n(n+ 1) (2n — 1) (20 + 3) 4o%a?
L —(n+ 2)(n + 3) lgu,[4e’a?
+ Cuss { (2n + 3) (2n + b) }
ey I [ (=2)(n=1) 2 (e+1) (n+2) (n+3) } ‘
T 40T dota? {(27&.-0) @n—1) V" " @n—1) 2n+3) V" 7t @n+3) (2n+5) 742 [ (234)
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229 MR. 8. 8. HOUGH ON THE APPLICATION OF HARMONIC

The law of variable depth which we have assumed appears to be the most general
law which will lead to a difference-relation connecting the successive C’s of order not;
higher than the second. We shall confine ourselves chiefly to the case where the
depth is uniform, but the following remark with respect to the more general case
seems worthy of attention.

If we put for brevity

1 —n( + 1)lg,/40*® L =n(@+1)lg/4e’?

=" @+ e+ 0 T @@+ 1)
L, = =1 42—+ Digha'a}  l
" oa(n +71) (2n — 1) 2n + 3) do’a?’

and suppose all the y's zero, so that there is no disturbing force, equations (234)
may be written v
— LG + 90 =0, — LGy + 1,0, = 0,7
§C) — LGy + 90 = 0, §0, — LG, + 9,06, =0, L )

(24).
E‘%C‘% - L505 -+ "7507 =0, &04 — LGCG -+ "7(‘»08 — O}JI

Now, suppose ! in the expression & -4 [ (L — p?) for the depth is of the form
4o’
7(r + 1) g,

is even.

Then & = 0 and %,_, = 0, and therefore the equations (24) will all be satisfied if

, where 7 is an integer, and for greater definiteness let us suppose that »

= LGy + 9,Cy = 0,
£C, — LGy + 1,C = 0,

£_.C_,—L._C, =0,
€_.C— LG + 9.C,.. =0,

e 1y oCrro 4 MysCrps = 0,
£.Crie — 0iCos + 70406 = 0,

and all the (Vs with odd suffixes vanish.
‘Further, these will be satisfied if C,., Cpis, . . . are all zero, provided A is a root of
the equation
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- LQ’ Nas 09 0;
gﬁ, - L4: MNys 0, = Q.

O’ 54’ - Lb’ Mg

- Lf—ﬁ: Nr—6s 0

f‘r—-m - Lr—-43 MNr—1
09 ‘fo’-b - Lr~2

It follows that theve exist certain types of free oscillation for which all the values
of C with suflixes greater than » are zero. For these types the height of the surface-
waves will be expressible by a finite series of terms terminating with a term
involving P,.

In like manner, if the disturbing force be derivable from a potential function of the
form of a second order harmonic, the equations which determine the forced
oscillations are

k
— LGy + 7,0, = _C")_’g_(_’ + 22

2.3 Iy,
&0, — LGy + 10y = — 5.7 4ok

&0, — LCg + nCs = 0,

57-_407-_4 — Lr—ZOr—Z | = 09
é‘:‘-zor—z - L.C, + 7]1'07'+2 =0,

- L;’+-ZC';‘+2 'i— 771'+2O'r‘+4 = 0.

If we suppose C, 4, C,,y, . . . all zero, the first 7/2 of these equations will serve to
determine C,, C,, . .. C. in terms of vy, while the remaining equations will be
satisfied identically. Thus the forced tides for the law of depth in question will be
expressible by a finite series of terms terminating with a term involving P,.

This general law does not hold when » = 2, owing to the presence of a term in the
right-hand member of the second equation.

The fact that for these laws of depth the tide-heights could be expressed by finite
series, instead of by the infinite series usually required, was originally proved by
LaPLACE in the ¢ Mécanique Céleste.”* '

# Part L, Book 1V, § 5.
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224 MR. 8. S. HOUGH ON THE APPLICATION OF HARMONIC

§6. The Period-Equation for the Free Oscillations.

Returning to the case of uniform depth, we see that the equations (23) divide
themselves into two groups, in one of which only even suffixes and in the other of
which only odd suffixes are involved. We therefore conciude that the types of
oscillation divide themselves into two classes, in the former of which the height of the
surface-waves will be expressible entirely by harmonics of even order, and in the
latter by harmonics of odd order alone. An exactly similar treatment is applicable
to each of these classes; we shall therefore select for discussion the former set,
contenting ourselves as regards the latter with merely stating results.

Denote by L, the expression

=1 2 he.

n(n +'1)+(‘2;‘{:m‘1)(2n v 3) T dete (23).

Then, putting all the y’s equal to zero, the types of free oscillation will be deter-
mined by the equations

C ™~

—Olatiy=

G o G _

57~ Glut =10 | )
P .. (26).

Ciy Gtz .

2n — 3) (2n — 1) Coluw + 2n + 3) 2n + 5) 0
|
J

At first sight it might appear that whatever be the value of A these equations will
serve to determine C,, Cg,. . . in succession in terms of C,, whereas we know that this
should only be possible for certain determinate values of A corresponding to the
different periods of free oscillation. The manner in which these values of X are to be
determined involves arguments similar to those used by KeLvin® in justification of
the procedure of LArLAcE with reference to the forced oscillations after it had been
attacked by Arryt and FERREL]. '

From equations (26), we obtain by actual solution

C, '
Ty = TGl
g ~ o
T =G | T ey |
L |
sl
* ¢ Phil. Mag.’, 1875. Cf. also an analogous problem treated by Niven, ¢ Phil. Trans.,” 1880, Part 1.,

p- 133 ef seq.
+ “Tides and Waves,” § 3.
1 “Tidal Researches ” (U. 8. Coast Survey 1873).
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and in general

" C 1
— 1)\ L) _ L )
(=1) 7.9.11 .. (2n+5) =G| - L, 7 O 0
1 1 :
O T O
1 1
0 e T sy
‘ . B - o \, :," _1.,
0, 0, . . .« oo —=Ty
’ Lz, (Zn—l)( n+1)
1
0, 0, » @B @n—1y — L,

or, denoting the determmant which multiplies C, in the last equation written down
by Am
Coro=(—1)"7.9.11 . . . (20+5)aC, (=246, . . . ).

Now the determinant A, is an algebraic polynomial of degree 2/2 in f?. . If therefore
we equate it to zero, we should obtain an algebraic equation of deovree n/2. If f?
has as its value any of the n/2 roots of this equation the first n/2 of equations (26)
will be consistent, while C,,, will vanish. By increasing the value of n we shall
approximate more and more closely to the case where an infinite number of such
equations are satisfied, while we shall impose an additional condition on the C’s,
viz. :—that at some stage one of them must vanish. Though in general in the actual
motion none of the quantities C,, C,, . . . are zero, they are however subject
to an important restriction, namely, that the series C, C, . . . must form a
converging series, and therefore we must satisfy the equation ”

CL/C,,.= 0.
W= 0

The latter equation may be regarded as the period-equation for the free oscillations.
Tt follows that as 7 is increased the roots of the equation A, = 0, which make
C,,,= 0, must approach closer and closer to certain definite limiting values, which
_correspond to the different periods of free oscillation, and that the series Cy, C,
calculated in succession from equations (26) can only form a convergent series When
f has one of these values.

Now we see that A, = 0 is the equation obtamed by eliminating the C’s f'rom the
set of equations '
© MDOCCXCVIL—A. 2 G
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226 MR. 8. S. HOUGH ON THE APPLICATION OF HARMONIC
c )
- C:’.L2 + T‘é = Oa
Cr—-a Cf +2 —
(2r—3)(2r—1) CL, + (2r 4+ 3) (2r +5) — 0, ¢« o . (27)
Cos
@3 @u—1) C.L, =0 ]
From these we obtain
1
CofC o _ @ EDE )
@r—3)r-1) " C/Crrs
1
— L — @Cr4+ 1D (2r +3)*(2r + b)
o C[Cr s ’
@r +1) @ 1 3)
and therefore by successive applications ‘
T 1
2r + 1) (29 + 3)* (27
Cr_s/C, = (2r — 8) (2r — 1) | L, - HEDEL T B+ D)
. . e ) »"+2 —"' .
1 -
2n—3)2n—122n+1) |,

- L;L .

Thus the eliminant of equations (27) can be expressed in the form

1 1 1 _ 1
I — L9 _579 113 (2n — 3) (2n — 1) (0 + 1)
2T e, L, - L, - = L, )

We therefore see that the roots of the equation A, = 0 are the roots of

1 1 1

L 5.72.9  9.112.13 (2n —3)2n—1)"2n + 1) 0
2 L — L —...- L, '

This form for the equation A, = 0 has an advantage over the determinantal form, in
that it enables us at once to proceed to the limit when n is made infinitely great,
and thus tn express the period-equation for the free oscillations by means of the
transcendental equation

1 1 .
5.7%.9 9.11%2.13
L2 — L4 - Lb _ (L[l /L")’I/f: — O . B . . . (28).
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We may however obtain a number of alternative forms for our period-equation.
From (27) we find
: 1
CuofO, _ _p _ Gr=3)@r—D @ +1)
@r+3)@2r+5 " " C,/C,_y ’
@r—1@r+1)

and therefore by successive applications

1 ' 1
C, 4 /C, —1 - (2r —3) (2r — 1P @r + 1) 57,9
(2r+3)(27+5) . T L, R
Thus, we have
1 1
L @ =3 =1+ @+ D@32 +5)
" Ci/Cry Ci/Cr g
@r—1)2r + 1) @r + 1) (2r + 3)
1 1 1
@ =3)@r=1PCr+1) (@Cr=T7)2r—5)72r—3) 5.72.9
- ‘ IJ)~._.4 — Ll‘—-zj, e e T L2
. 1 1 1
+ (2r4+1)2r43)2(2r+5)  (2r+5)(2r+T)*(2049) (2n—3) 2n—T)y(2n4+1) .
Lo, - L., - L,

This is an alternative form for the equation A, = 0; by making = infinite, we
obtain as an alternative form of the period-equation

1 1 1
L Cr—3)@2r—1PC@r+1) (2r—=T7)2r —5F 2r—3) 5.7.9
4 ) LI’——-2 -_— L)’~4. e e e T L2
1 1
Qr+1D)@r+3F@r+5) @r4+5)@r+7)P@r4+9) v
-— ., =0 (29)
Lys — Ly, — .. .adinf.

where 7 is any even integer.

§ 7. Numerical Solution of the Period-Equation.

The method I have used to solve the above equation will perhaps be best explained
by giving a numerical example in detail.

Taking for the ratio of the mean density of the earth to that of watel the value
given by Bovs,* we deduce

* ¢ Roy. Soc. Proe.,’ vol. 56, 1894, p. 132.
2 ¢ 2
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228 . MR. S. S, HOUGH 'ON THE APPLICATION OF HARMONIC
Ly ' p/o‘ = 18093,
whence
029 = '89144 G190/ = 97829
94/9 = 93969 g9 = 98128
9slg = 95825 916/9 = 98355
gs/g = 196807 G1s/g = 98533
Jilg = 97415 Jaolg = 98676

the values of ¢,/g appro’ximating closer and closer to unity as 7 increases.
Next take /g/dw’a® = 45, which corresponds to a depth of 33ly5 of the earth’s
radius, or about 7260 feet. With this value of the depth we find ‘ ‘

1 N’ . 1 A? .
1 A ' 1 p N\
L= (\4;;: 1> 4002482, Ly = i’4’1r< - — 1) — 022143,
S A : 1 /W .
L= - <4w2 1> — ‘011835, L= 5 1 <ZJ,§ — 1) — 022746,
= 1 ( » . =1 (¥ :
L= o'y (5 1> — 017184, Ly = 5= <4w2 — 1> — 023168,
1 Y . 1 A2 A
Lo =15 11 <4;5 — > — 019777, Loy = 5551 <~;—2 ~1) — 023476
Introduce for brevity the notation
H — @2n + 1) 2n + 3)* 2n + 5) (2n — 3) (2% — 1P @n+ 1) 5.72.9
n L, = L,_, — =L,
1 1
K . (2n —3) (2n — 1)2 (2n + 1) (297, + 1) 2n + 3) (Zn + 5)
n = L, — Ln+2 — .. —ad %ﬂf
The period-equation (29) may then be written
L;L — Hfz-—'z-— Kn+2ﬁ: 0 L ‘ * * (30)

‘Suppose now that \2/4w? has a value found by equating to zero one of the quantities
L, say for example L8 ; putting Ly = 0, we obtain with the numerical values given

above
32

I = 2728726,
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and with this value for \*/4w?® we find

L, = 27916, Ly, = — 008529,
L, =""017624, L, = — ‘016251.
1

The value of log (2n + 1) (20 + 3)? (21 + 5) i

for n = 2, 4°6566, for n = 8, 6'8898,

,, =4, 58490, . ,, n= 10, 6'5564,

,, n =6, 5'3034, ’ ,, n= 12, 6°2769.

With these values we find for the successive convergents to the continﬁed frac-
tion H . _
' ‘001141, -001217, -001219,

while the successive convergents to the continued fraction K, are

— 000910, — 000939, — ‘000940, . . .

It will be observed that these continued fractions converge with great rapidity ; so
long as the depth of the ocean is not less than that we are here using, I find that
when M/4e® has a value in the neighbourhood of a root of the equation L, = 0, the
continued fractions H,_,, K,,, are represented without sensible error by their fourth
convergents, while in many cases the second convergents will form a sufficiently
accurate approximation to their values; this rapid convergence of course greatly
facilitates the numerical computation. In practice, the simplest method of evaluating
the continued fractions is to assume that, for a sufficiently large value of n, K, = 0,
and then to compute K, _;, K4, &c., in succession from the formula

K @ =1 @5 @ —3)
“=2 Ln-—g — Kn

Thus, in‘ the present instance, we may put K,; = 0, and deduce
log Ky = 1406, log Ky, = n4436, log Ky = 249730,

whence, as above, S .
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230 MR. 8. S. HOUGH ON THE APPLICATION OF HARMONIC

In like manner, in order to evaluate H,_,, we assume that, for some sufliciently
small value of », H, = 0, and then compute H,,,, H,1p ..., H,_y in turn by

means of the formula
1
H. @ Gt )
r+y = L., — H,

In the present case we find

log H, = 32107, log H, = 3:0516, log Hy = 3:0860,

whence ‘ ,
HG = 001219,
and .
: = - '000279.

This being a small quantity we conclude that there is a root of the period-equation
differing but slightly from the value assumed for \?/4?, namely, 2:23726. A closer
approximation will be found by using this value in Hg K,;, and again equating
L; — H; — Ky, to zero; in other words, by putting

Lg = - +000279.

The second approximation to the root is therefore given by
N/do? = 2:25735.

Taking this Valué, and proceeding as befbre, we find

L; — H, — K, = 000279 — *001183 + ‘000961

. == *000057.
We have now found that, when \/40® = 2°23726,
L, — H; — K,y = — *000279,

and when M/4w® = 2:25735,
L — Hy — K;j = 4+ 000057,
whence, by interpolation, we conclude that
Lg — Hy — Ky =0,

when
/4w = 225394,

In general we shall at this stage obtain a sufficiently close approximation to the
root sought, as may be verified by actual substitution. Should however great
accuracy be desired, we may re-start the computation, using the value already found
as a first approximation, and so continue until the desired degree of accuracy is
attained. The number of cases in which I have found a repetition of the process
necessary is however extremely limited.
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By the method here sketched I have calculated the first six roots of the period-
equation for four different depths of the ocean corresponding to the values
4o, vo» To» o respectively, for hg/4w’a® These depths are equivalent to about
7260, 14520, 29040, 58080 feet respectively, and the results are embodied in the

following tables :—

TasLe L
{ |
‘ Approximate value Period of Cor &
' of A%/4w?, computed | Corrected value iy L ori0a O orresponding
‘ from equation of A2/du? oscillation expressed | period when there
| L g: 0 ! wre in sidereal time, is no rotation.
!
J h m. h. m
Depth 7,260 feet (hg/dw’a® = 4%); p/o = 18093.
n= 2 56230 44155 18 35 32 49
n= 4 95036 T 96357 12 135 17 30
n= 6 1:4971 1°5224 9 435 11 58
n= 8 22373 2:2539 7. 596 : , 9 5
n =10 31755 3:1867 6 433 7 20
n =12 43130 ‘ 4:3209 5 464 - 6 9
Depth 14,520 feet (hg/4w’a® = %) ; p/o = "18093.
n= 2 69600 . 62473 : 15 110 23 12
n= 4 1-4202 1'4368 10 07 12 23
n= 6 2:5032 2-5168 7 338 8 28
n= 8 3:9798 . 3-9882 6 05 6 26
n =10 58544 58600 4 574 5 11
Cn=12 81283 . 81322 4 125 4 21
Depth 29,040 feot (hg/40?a? = 1) ; p/o = *18093.
7%= 2 96344 92506 12 266 16 25
n= 4 - 23599 2:3707 - - 7 476 8 45
n= 6 45155 4-5224 5 386 5 59
n= 8 . 7-4649 7:4691 4 235 4 33
n =10 11-2123 112150 3 350 3 40
n=12. 157588 157609 3 14 3 4
Depth 58,080 feet (hg/4w’a® = }); p/o = "18093.
n= 2 1-4983 14785 9 521 11 35
n= 4 42393 42453 5 494 6 11
n= 6 85402 8:543% 4 63 4 14
n= 8 1404352 14-4371 3 95 - 3 13
n =10 21:9275 21-9293 2 338 2 36
n =12 31-:0202 31-:0212 2 93 2 10
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232 MR. S. S, HOUGH ON THE APPLICATION OF HARMONIC

By a comparison of the 2nd and 3rd columns it will be noticed that in most cases
the roots of the frequency-equation are given at once with a fair degree of accuracy
by simply solving the equations L, = 0, and that this approximation improves the
greater n becomes. In the fifth column I have given the periods of oscillation for an
ocean of the same depth when the rotation is annulled, calculated by means of the
formula o

N _ (1),

4o® 4e%u? ’

where o now denotes a constant such that #/o = 12 hours. It will be seen that the
approximation obtained by omitting the rotation continually improves with increasing
values of n, but in no case will it lead to as accurate a result as the formula

xg h[/n 2
1 L=n(n+1) {4&&2 C@—-1)Cn+ 3)}'

For instance, taking the case hg/4w’0® = 45, n = 8, the error introduced by using
the first formula amounts to about 14 per cent., whereas the second form gives the
frequency with an error less than one per cent. of its true value.

§8.  Unsymmetrical Types.

An exactly similar method of treatment is applicable to the types which are
represented by a series of harmonics of odd order ; the period-equation for these types
is given by

Ln - Hu—-z - Kﬂ+2 =0

where n now denotes an odd integer and H,, K, denote respectively the continued
fractions

1 1 1
Cn+ D) En+3YCn+5) (2n—3)02n—1)2n + 1) 3.52.7
L, - [ e "
1 1
(On —3)2n — 1P @n+ 1)  (Cn+ )0 + 3)? (20 + b)
Ly — Lo — ... ad inf.

Treating this case in the same manner as the last, I have found the first six roots
and the corresponding periods of oscillation for the four depths employed as follows :—
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Tasre IIL
e R | ,
Approximate value ‘ Corrected value I Corresponding
pprofirate, | 24 Period of oscillation. | period
of \?/4w?. i of N/4w'. . .
i \ without rotation.

— | _ i
' 1‘ ’ h m 1 h. m,

Depth, 7,260 feet (hg/de’a® = ) ; p/o = '18093.
n= 1 *24095 *15491 30 293 59 17
n= 3 74340 *70890 14 152 22 49
n= 5 1-2002 1-2270 10 500 14 13
n= 17 1-8426 1-:8633 8 475 10 20
n = 2:6815 26951 7 186 8 7
n=11 37193 37287 6 129 6 41

Depth, 14,520 feet (hg/dw’a® = 5%); p/o = "18093.
n= 1 28191 *22204 25 280 41 55
n= 3 1-0201 1-0160 11 543 16 8
ne= 5 1-9132 1-9360 8 383 10 3
n= 7 31919 32025 6 423 7 18
n = 48672 48741 5 261 5 44
n=11 69414 69461 4 332 4 44

Depth, 29,040 feet (hg/4w*a® = %) ; p/o = '18093.

| |
n= 1 *36381 32658 20 599 29 39
n= 3 1-57362 1-57822 9 331 11 25
n= 9 33391 3:34816 6 335 7 7
n= 7 58906 5:8959 4 565 5 10
n= 9 9-2387 92421 3 568 4 4
n=11 13'3856 133880 3 168 3 21

Depth, 58,080 feet (hg/dw’a® = £); p/o = "18093.
n= 1 52763 50650 16 517 20 58
n= 3 2-6806 2:6853 7 194 8 4
n= 5 61911 61957 4 493 5 1
n= 7 11-2879 11-2906 3 343 3 39
n= 9 17-9816 179833 2 498 2 52
n=11 262742 262753 2 205 2 22

We have next to evaluate the quantities C,, C, . .

§ 9. Numerical Computation of the Height of the Surface- Wawves.

.5 when once the periods have

been determined this will present no difficulty. Suppose we are dealing with the
MDCCOXCVIL—A.

2 H
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234 MR. 8. 8. HOUGH ON THE APPLICATION OF HARMONIC

type whose frequency approximates to the root of the equation L, = 0; we have
seen in the preceding sections how to evaluate K, 4, K,y ... and H,_,, H,_,, . .
Also we have

C,o/Cr= (20 4 3) (2 + 5) K, .y,
Ci_o/C, = (2r — 38) (2r — 1) H,_,,
and therefore
Coa=(0n+3)(2n 4+ 5)K,C,
Copu=(0n+3)2n+35)2n+7)(2n +9)K,,, K,,,C.,

071—2 = (2n - 1) (2')'& - 3) Hn-—Q Om
Cooy=(0@n—1)(2n —38)(2n —5)(2n —7)H,_,H,_,C..

Thus the height of the surface-waves is given by

{=CeM ...+ 2n—-1)2n—-3)(2n —5)(2rn~T7)H,_,H,_, P._,
+(@2n—1)(2n —3)H, , Py + P, + (20 +3) (20 + 5) K, ;5 Puyy
N (27@ e 3) (2n + 5) (2/1, - 7) (27L -+ 9) K,,+2 K”M P71+4. + ...

where N is the root of the frequency-equation in question, and C, is an arbitrary
constant,
Continuing with the particular numerical example dealt with in § 7, we take

A 5 .M .
o= 225894, or o= 15014
and deduce
L, = 281944, L, = — 013199,
L, = 065i79, Ly, = — 016171,
Ly = 018021, Ly, = — ‘01814,
L& p— .000232, L']S —_— .01951,
Neglecting Ky, we find
log Ky = n 5535, log K5 = n 57785, log K, = n 4:0698,
log K, = n 4'4397, log K, = n 4'9812,
and in like manner
log H, = 32064, log H, = 3:0458, log I, = 3:0753;
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from these we deduce

log (C,/C,) = 27505, log (C,,/Cs) = n 1-5822,
log (C,/C;) = 10414, log (Co/Cy0) = n 1°1994,
log (C,/C;) = 18653, log (C,,/Cyy) = 729636,

log (Cys/C,,) = n 27885,
log (Cs/Cy) = 1. 2:647 ;
whence, finally
(y/Cy = ‘0014, Cy,/Cs = — 3821,
Cy/Cs = Cyo/Cs = + +0605,
Cy/Cs Cy,/Cs = — 10056,
C16/Cs = + 0003,
C,s/Cs = — 00002,

1l
B S
& o
- O
NN

Combining with our solution a second, obtained by changing the sign of ¢ where-
ever it occurs, we obtain a solution in the real form

’

{ = Cycos (M + €) [*0014P, 4 *0255P, + 2319P, + P,
— '3821P,, + "0605P , — “0056P,, 4 “0003P; — ... |

where C, € are arbitrary constants.

This determines the type of oscillation for that particular mode which is in question.
It will be seen that the coefficient of Py predominates, and that consequently the
deformation of the surface will be similar in character to that which takes place when
there is no rotation, in which case the height of the surface-waves is expressed by a
single harmonic term. The nodal circles will however be displaced from their
positions when the rotation is annulled.

§ 10. Numerical Expressions for the Height of the Surface- Waves.

By the method illustrated in the preceding section I have computed the series
which indicate the types of oscillation for each of the forty-eight cases for which the
periods are tabulated in §§ 7, 8 ; these series are given in the following tables. To
obtain the height of the surface-waves, the series here given must be multiplied by a
simple harmonic function of the time of arbitrary amplitude and phase, but whose
period is found from the corresponding entry in the preceding tables.

2H2
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Tavre I1L-—Heights of Surface-Waves for Symmetrical Types.

hglde®a® = 4% ; (7,260 feet).

JA

(3

A

|

n= 2 | P,—12678P, + 52067P; -~ 1097P, 4 0137P,; — 0012P,, + -0001P, — ...
4 | -9873P, 4+ P, — 8753P; + ‘2595P; — ‘0403P,, + ‘0039P, — ‘0003P,, + ...
n= 6 | ‘0269P, + 2714P, + Py — 5453P + 1139P,, — 0132P}, + -0010P,, — -0001P,, + . ..
8 | 0014P, + 0255P, + 2319P; + Py — -3821Py, + ‘0605P, — -0056P;, + ‘0003P,, — . ..
n=10 | ...+ 0012P+ 0196P;+1977P+ Pg— 2934P,, + 0373P,,— -0028P ;+ 0001 Py - . . .
n=12 | ...+0009P;+ 0150P+1715Py + Py— 2380P, +-0252P,;— 0016 P 4+ 0001 Py, — . ..
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n= 2 | Py— TA84P, + ‘1707P, — ‘0188P, + -0012P,, — 0001P,, + ...

n= 4 | 1286P, + P, — -4070P, 4 -0594P, — ‘0046, + -0002P), — . ..

n= 6 | -0069P, + 1311P, 4+ P, — -2556P + -0262P,, — -0015P, + ‘0001P;, — ...

n= 8 | -0002P, + 0062P, -+ -1127P, + Py — -1840P), + -0144P,, — -0007P, + ...
n=10 | ...+ -0002P, + ‘0048P; 4 -0969P, + P}, — ‘1432P , + ‘0090P,, — -0003P; + . ..
n=12 | ...+ -0001P; + -0037P, + 08457}, + Py, — 1170P,, + 0062P, — 0002P 4 + . . -

hgjde®a® = % ; (29,040 feet).

n= 2 | P,—-4029P, + 0477P, — ‘0027P; 4 0001Py; — ...
n= 4 | ‘0677P, + P, — ‘1989P, + -0144Py — -0006P;, + ...
6

n = “0017P, + “0651P, + P, — -1259P; + -0064P;) — ‘0002P, + ...

nw= 8 | ...+ 0015P, + -0560P; + Py — 0912P; + "0036P,, — ‘C001P), + ...
n=10 | ...+ 0012P, + ‘0482P; + Py, — ‘0712P;, + 0022P), — ...

n=12 | ...+ 0009P, + -0421P,, + Py, — ‘0583P;, + ‘0015P;; — ..

hg/de®a® = t; (58,080 feet).

n= 2 | DPy— 2076P, + 0125P; — 0004P( + ...

n= 4 | ‘0347P, + P, — 0989P, + -0036P, — “0001P;y + ...

n= 6 | -0004P, + -0326P, + P, — -0627P, + -0016P) — . ..

n= 8 | ...+ -0004P, + 0280P, + Py — -0455P;, + 0009P, — ...
n=10 | ...+ 00.3P, + 0241P, + Py, — -0355P;, + -0006P;, — . ..
n=12 | ... 4 0002P, + 02L0P;, + Py, — -0291P), + 0004Py, — ...
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TasLe IV.—Heights of Surface-Waves for Unsymietrical Types.

hglde®a® = 4% ; (7,260 feet).
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n= 1| P, —1'5058P, + 7106P, — 1673P, + -0235P, — -C022P,, + 0001P); — ...

n= 3 | ‘1221P + P, — 1:0907P, + ‘3875P, — ‘0701P, + 0077P; — -0006Py + ...

n= 5 | -0161P, + ‘2772P, + P, — ‘6837P, + "1688P, — “0226P}, + ‘0019P; — “0001Py; + .. .

w= 7 | 0010P, + ‘0280P, + 2521, + P, — “4498P, + 0811P;, — ‘0083P; + 0006Py; — . ..

n= 9 | ...+0014P, + 0224P, -+ 2137P, -+ P, —3320P); +0468P, —0039P,; +-0002P,, — . ..

n=11 | ... +0010P;+ 0171P,+ 1837P, + Py, —2628Py, + 0304P ; —0021 P}, +-0001P,y — ...
hglde®a® = 5% ; (14,520 feet).

n= 1| P, — 10477P, 4 2086P; — ‘0396P + ‘00307, + ‘0001Py; + ...

n= 3 | ‘0778P, + P, — ‘5478P, + 0993P. — “0091P, -+ “0005P; — ...

n= 5 | ‘0048P, + ‘1374, + P, — 3156P, + ‘0381P, — -0025P;, + 0001Py; — ...

w= T | -0001P, + ‘0068P, + ‘1218P; + P, — -2141P; + ‘0190P); — 0010Py; + ...

n= 9 | ...+ 0002P; + ‘0054P, + ‘1043P, + P, — -1611P, + -0113Py, — -0005P;; + . ..

w=11 | ...+ 0001P, + 0042P, + ‘0903P, + P, — ‘1288P,; + -0074Py; — -0003Py; + ...
hgldo®a® = {5 ; (29,040 feet),

an= 1| P, — 6516P, + '1034P, — “0073P, + 0003P, — ...

n= 3 | 0471P, + P, — -2726P, -+ ‘0248P, — ‘0011P, + ... ,

n= 5 | ‘0013P, + 0689P, + P, — ‘1547P, + -0093P, — ‘0003Py, + . ..

n= T | ...+ 0017P, + 0605P; + P, — ‘1059P, + ‘0047P), — -0001Py; + ...

w= 9 | ...+ 0014P, + 0519P, + P, — -0800P;, + -0028P; — -0001Py; -+ ...

n=11 | ...+ 0010P, + 0450P, + P, — -0641Py; + -0018P}; — ...
hglde®a® = §; (58,080 feet).

w= 1| P, — 3697P, + 0310P, — 0011P, + ...

n= 3 0265P) + Py — -1361P; -+ "0063P,; — -0001P, + ...

n= 5 0003P; + 0346P; + Py — 0770P, + 0023 — . ..

w= 7 | ...+ 0004P; + ‘0302P; + P, — 0528P, + 0012P, — ...

n= 9 ... 4 -0003P; + 0259P; + Py — "0399P); + "0007Py5 — ...

n=11 | ...+ 0003P, + 0225P, + Py, — 0320P; + -0005P;; — ...

PHILOSOPHICAL
TRANSACTIONS
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§11.  Forced Tides.

Leaving now the problem of the free oscillations, let us return to the equations of
§ 5, when we retain the y’s. It is obvious in the first place that a disturbing force
whose potential at the surface is expressible by surface-harmonics of even order alone,
or of odd order alone, will give rise to a forced oscillation of like character. Further
we may consider separately the effects of the different terms in the disturbing
potential and superpose the results. Suppose for example that the surface-value of
the disturbing potential is expressible by the single harmonic term

7P () ¢
where we will suppose % even.
The equations (23) which determine the type may be written

— L, +C/7.9=0
057 — QL+ Cy/11. 18 = 0

,1_2/(2n — 3) (2n - 1) — C,LL +- (/,,+2, (Zn -+ 3) (2n + 5) = v hi/de*c
C./(2n 4 1) (2n 4+ 8) — CopyLiyy + Copt/ (20 + 7) (20 4+ 9) = 0

with the condition that C_= 0; whence we obtain
Cy/Co=(2r—38)(2r — 1)H,_y(r <n+ 1)
Cw/C=02r+3)2r+5)K, n(r>n—1)

and therefore .
O” {H"—2 + KIH-Q, - Lﬂ.} = 'ynh/4w20(/2,

or

C — ¥aull
T de®e® My + Ky — L)

Thus the height of the tide is given by

(= v o4 (20— 1) (20 — 3) (20 — 5) (2n — 7)H,_H,_ P, ]
4eo?a? <H¢ -9 + 1{71.).0 bl Lﬂ) (2n_ 1)(2;@"‘3)Hﬁ....2Pn._.2+Pﬂ+(2n+3)(2’2'{"5) 71+2[ i+
A+ (2n 4 38)(2n 4 5) (20 + 7) (204 9) K, Koy Puyy + . :l

The expressions H, K, L all depend on A the frequency of the disturbing force. It
is obvious from the above that the tides become very large when A approaches a root

of the equation
Loy = Hiyg = K?;M =03
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and this equation, as we have already seen, is the equation which determines the
periods of free oscillation.

It is usual in Tidal Theory to express the height of the forced tides in terms
of the height of the corresponding “equilibrium-tides.” If we denote the height of
the equilibrium-tide arising from the disturbing potential in question by G,P, (n)e™,
we see, on omitting all the terms on the left of (23) which depend on inertia,
and replacing C, by G,, that

hq,8,/A*a® = y,hj40’a* ;
and therefore
Vi = 9.6

If then ¢, denote the height of the equilibrium-tide, we have

_ hade’a?
0 - (Hn_g + Ku+2 - Ln) -Pn

\ctnr\-

T4 (2n=-1) (20—38) (2n—5) (2n—7) H,_,H,_,P,_,]
+ (2n—1) (2n—3)H,_,P,_,+P,
+ (2n+38) (2n+3) K, , ,P. .4
+ (2n+3) (2n+5) (2n+7) (2049) K, . K, 4 4Pu iy
-+ .

The most important practical application of the above theory is the case where the
disturbing potential involves only a single harmonic term of the second order, and
the period of the disturbance is long compared with the period of rotation. Thus
taking M/4w® = 00133, hg/4w’a® = 1/40, which corresponds to the case of lunar-
fortnightly tides in an ocean of depth 7260 feet, we find

L, = — ‘04745, L, = — 02886,
L; = — ‘03561, Ly, = — 02764.

whence, neglecting K,,, we obtain in succession

log Kj, = nd-12,  log K;g =n4'432,  log Ky = n4'8151,
log K; = 233055,  log K, = n89992.
Thus
L, — K, = — 08351,
- log (C,/C,) = n17986,  log (Cy/C,) = n1'4608, log (Cy/C,) = n1-2216,
log (C,y/Cq) = 110388, log (C),/C,y) = n2°88,

1 g.
\ire 40 4
ML (— S D
C,/6, = K -1, = 2669,
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240 MR. 8. 8. HOUGH ON THE APPLICATION OF HARMONIC
and therefore

%/CI = *2669P, — *1678P, 4 ‘0485P, — *0081P; 4 *1009P,, — 0001 P, -+ .

In the same manner, when hg/de’a?® = 4,

¢
Eo/Py

= "4079P, — "1671P, + -0285P, — ‘0027P; + ‘0002P,, — ... ;

when hg/do%a® = %,

¢

'z_‘./i)" = .56971)2 - .1388.‘[)4‘ + 'OIS{P(; — .OOOGE)S + P ;
S0/ + 2

and when /ig/400® = ¢

-

¢
&/ Py

= "7208P, — ‘0978P, + 0048P, — 0001, + . ..

The lunar-fortnightly declinational tides have been evaluated by Professor Darwin*
for depths which correspond with the first and third cases given above, the results
being expressed in series proceeding according to ascending powers of the variable u.
If we replace the various powers of p by their values in terms of the zonal
harmonics, we may deduce the following series from those given by Professor
DArRWIN ; when hg/4w’a® = -, we find

é;[/%; = '2889P, — "1755P, + 0490, — -0079P; + '0009P,, — . . .

. - 949 — 1
while, when hg/4e’a® = %,

§0/;P2 = '5969P, — "1385P, -+ “0126P, — 0006P + . . .

The difference between these expansions and those we have given above, is to be
explained by the fact that we have incladed in our analysis the effects due to the
attraction of the water on itself. I have re-computed the lunar-fortnightly tides,
starting with the assumption that p/o = 0, and obtained practically identical results
by the two methods.

We see then that the effect of the gravitational attraction of the water is to diminish
the tides, as compared with the equilibrium tides, in the first case by about 8 per
cent., and in the second by about 5 per cent.

* ¢ Encye. Brit.,” drt. “Tides.” § 18
T Ferrurs: ¢ Spherical Harmonies,” p. 27.
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§ 12. Lunar-Fortmaghtly Tides in an Ocean of Variable Depth.

A similar method of treatment may be employed when the depth follows the less
restricted law, of the form £ 4 /(1 — u?), made use of in § 5. The numerical com-

o’ where 7'1s
r(r + 1)g.

a small integer, since, as we have seen, the series which expfess the tide-heights will
then rapidly terminate.
For example, taking » = 4 so that

putation is greatly facilitated in this case when [ takes the form

L/ S 1
40’ 4.5g,lg T {1 _ __} ’

T

which makes the value of / for the earth about 15,454 feet, the values of C,, C, are
given by the equations

. k 4 1 — ks ly
— LGy = {4w‘~’a2 + 7 4w2a2} V2= {4w9a~ + 7 4w‘“’60“}(5

2.3y, 2 3 lgy
5.7 4o’

G,,

whilst all the remaining C’s vanish. The notation empioyed is that introduced at

the end of § 5. '
kg

4o’

Taking = p/ o = 18093, we find in the case of the lunar-fortnightly tides

L, = — ‘27660, L,= — 23787,
log & = 23105,
whence we obtain at once

kg 4 Iy 7: €
= — L ) 22 2 == 7496
G <4:a)2a2 + 7 4w'2a2> g L, 74266,
2.3 ly, G, A
C‘]: = = '[/d — E~ 02 — '098()@?

g

Thus, if —~—5 = 5 + 4 5 sin® 0, where 6 denotes the co-latitude, which for

4’
system of the dimensions of the earth makes the law of depth

(58080 + 15454 sin? ) feet,
we find for the tide-height the expression

{ = G,[7426P, — “0980P,].
MDCCUXCVIL—A, 21
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242 MR. S. 8. HOUGH ON THE APPLICATION OF HARMONIC
Similarly, when

_4“’?”“(_1_ !/v'z)__. A cin®
h = g \10 5 4, )= (29040 -+ 15454 sin 0),

{ = G,[6201P, — '1446P,];
when

dofe? (1| 1 ,
h = ; (20 -l-4 - - sin 0> (14520 + 15454 sin® 0),

{ = 6,[5018P, — '1897P4] ;

and when

Lo 47(99@9' } “Ev f/w - \ _ ‘ -
h=" <40+, 5y, S 0)-—(7260 + 15454 sin? ),

Again, if we take

' _ vors,

l= 6.77,

the series for { will terminate with a term involving P, and the values of C,, C,, C;
must be computed from the equations

—h@+%%=<”ﬂ~wlA@:<% 44 J>6

to T Tdeta?) g \do'a® T 7 dola?

. : _ 2.3 by, _ 2.3 gy
60— LG = = 55 e = T 57 dwa O
§.C, — LGy =03

ky 1

from which we find, when T = 5
(4 J
), = 73166, C, = — 09786, C, = 0024,

Thus for the law of depth

42a?
h = -

{}7 n 51,7 A 9} = 58080 4 7218 sin? 0,

[ = G,[7316D, — 0978P, + "0024P];
in like manner, when
dota?

1 1_ g 9 }m_ )
g{ +67 sin? 0} = 29040 4 7218 sin® 6,

[ = G,[5954P, — *1426P, 4 ‘0064P;];

h =
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when
J = 4“5“2 {5]0 + 6'17 ;’r sin? 0} = 14520 4 7218 sin? 6,
[ = G,[4576P, — '1821P, 4+ ‘0137P,];
‘and when

A gin? 0} = 7260 4 7218 sin® 4,
[ = G,[3457P, — -2075P4_, + 0234P,].

For other values of / we must employ a method similar to that of the last section.
The general formule for the computation of the forced tides due to a disturbing
potential of the second order are

Toy 4 Iy, Iy 4 g, h
= LGy + 9,0, = 4o 222+~'74w2a~_<‘v2' T 7 4 a)(&

4w’a® ?
2.3 ly, 23 gy o
5202 — LO+ QMOG - 577 do®a® 5.7 de’a? ¢, } C (31)’

5404 - LGCG + 7)608 =0

J
where
£ = 1—2m+ 1)lg,/40%? 1 =n@m+1)ly,/4e’*
T T G+ 1)@+ 3) T2 = o — 1@ + 1)
[, = L =1 4 2l=n2(t D) lpde’a} - kg
" on(n+ 1) (2n — 1) (20 + 3) 4o*a?

Let us introduce the notation

0 = &m Egmiy Ems
o IJn - Ln-g _ .. I.Jz ’
K = EuooMug &
N — 7 T T E

A - Ln+g -

Then it may be shewn, as in the last sections, that for values of n greater than 2,
()n-}-g/on = Ku+2/77n L T (32),

and therefore the first two of equations (31) may be written

Vi l
- Lszoz + 77204 = { TG + s } G,,

4’a? 40%a?
23 Iy
"“'202 — (L —K)C,=— 5.7 4w222 G,.

212
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244 MR. 8. S. HOUGH ON THE APPLICATION OF HARMONIC

On solving these equations we obtain

_ ko + gy _____f%; 2.3 gy, Hy 6,
G, = {4w~c + 7 40ta® - K, + 5.7 40*a® &, L, - Hy, — K
(33),
ks 4 Iy } K, G, 2.3 g G,
o Po_ 4 F Y9 2 2.9 lffy 2
= {4m~r9 T T e ny Iy — K, + 5 7 4e%® T, — H, — K, _J

after which we can deduce Cy, C; . . . in succession by means of (32).
For example, taking
~ kg 1 ly 1

dofa® = 207 4w’a® T 307
which makes the law of depth for the earth

(14520 + 9680 sin® 0) feet,
we find for the lunar-fortnightly tide

L, = — 18276, [, = — 08722, L; = — ‘07583,

L8 = e '07156, LlO _ e .06955, L12 = -~ ‘0685’
and

log &y = 41437, log &€m, = n 69549, log &m, = 69586,
log §ms = 54217,  log &gy = 5°578,

whence, if we suppose K, = 0, we obtain in succession, from the formula

K, = E% ~9 M2
L - Kn+2

log Ky, = 2475, log K, = n4'583, log Ky = n4:1062,
log K, = 40758, log K, = n3'2025.
Also
log H, = n 30206, log & = 2:8707, logn,=37730;

whence from (33) we find
Cy = 47196,, C,= ~ 18526,
Again
log (Cy/C,) = log (Ky/n,) == 2:6976,
log (Cy/Cy) = log (Ky/n,) = 23910,
log (Cyy/Cs) = log (Kyo/ms) = 2774,
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whence finally
C(; :—-—'0092, Og = '00023, 010 = .00001 5

and the expression for the tide-height becomes
[ = G, [4719P, — ‘1852P, + 0092P 4 "00023P 4 “00001Py -+ . . .].

As a further illustration, I have computed the series for the tide-height for the

0 /1 1 . . .
case where i = 4—3 ¢ <——v —= sin® 9>, that is, where the depth is 14,520 feet at the

20~ 30
poles and shallows to 4840 feet at the equator. The value of { in this case is as
follows :—

¢ = G,['3082P, — ‘1106P, + ‘0467P, — *0158P; + '0048P),
— *0014P,, + 0004P,, — *0001P;; +. . .].

When 7 is positive, that is, when the depth at the equator exceeds that at the
poles, the series appear to converge more rapidly than when the depth is uniform,
but the opposite is the case when the water is deeper at the poles than at the
equator.

§ 18. Forced Oscillations of Infinitely Long Period.*

If we suppose \ so small that we may neglect \/40? we find, on putting \*/4e® = 0,
for the height of the forced tides the following four series in place of those given
in§11:—

EJ/% = 9661P, — "1671P, 4 0482P, — “0080P; + “0009P;; — ‘0001P, + . . .

co/ng — 4070P, — *1666P, 4 *0284P, — *0026P; + ‘0002P,) — . . .

£ _ .5689P, — '1385P, 4+ ‘0130P, — ‘0006P; + . ..
CO/PQ

£ 7201P, — ‘0978P, 4+ ‘0048P; — ‘0001P; + .. .

Sy

The lunar-fortnightly tides therefore differ only very slightly from tides whose
period is infinitely long. The difference between these latter and the solar semi-

# Several of the conclusions of the present section have been previously arrived at by Professor
Laue (‘ Hydrodynamics,” chapter viii.); but, on account of the important light which they throw on the
later sections, T have thought it desirable to treat the questions in some detail, even at the risk o
repeating what is already well known.
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annual tides will be quite inappreciable, and we may take the above series as giving
a good representation of the solar long-period tides, unless the effects of friction
become important for such tides.

The fact that when the period of the disturbing force is increased without limit
the free surface does not tend to approach its equilibrium form appears at first
sight to be at variance with the general laws of oscillating systems. The explanation
of this apparent anomaly may perhaps be made clear by considering a simple form
of ¢ gyrostatic” system which possesses only two degrees of freedom. In the absence
of frictional forces, the general equations of motion of such a system may, by a proper
choice of coordinates, be expressed in the form

.%é--m?}+n%.—:x,
y + wx + miy = Y.¥

Here «, y denote the generalized coordinates of the system, Of the terms on the
left, the terms z, y are due to inertia, the terms ey, wz are described by THoMSON
~and Tarr as “motional ” forces, and the terms 7%, m*y as ““positional” forces ; X, Y
are the generalized components of the external disturbing force.

If now @, y, X, Y be supposed proportional to ¢*, we find from the above equations

— N — wily + n'x = X,
— Ny 4wl + mPy =Y,

whence we may obtain z, ¥ in terms of X, Y. When the period of vibration is
indefinitely prolonged, A will approach zero as a limit, and the limiting form of the
solution will in general be

x = X/n?, y = Y/m

This implies that the displacements will in general tend to acquire their equilibrium-
values as the period of the disturbing force is lengthened. There will, however, be
an exception to this law if one or both of the positional forces n*x, m*y vanish.

Let us first examine the nature of the free oscillations in such cases; omitting
X, Y, and supposing that n = 0 while m remains finite, we have for the determina-

tion of the free motions
~— N — wi\y =0
— Ny 4+ wihx + mPy = 0

or, if we denote by u, v the generalized velocity-components so that « = & = i\,
v =y =iy,

* Twomson and Tarr, ¢ Natural Philosophy,” vol. 1, p. 896 (1886 edition ).
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W\ (v — oy) = 0,
— Ny + ou + mPy = 0.
These equations will be satisfied if A =10, u = — %Z = const. It follows that the
system is capable of a small free steady motion relative to the rotating axes, defined
by

y = const, U= — my/w.
If both n?x, m%y are zero, the equations for the free motions become

— Nz — wily = 0,
— Ny 4+ otz = 0 ;

both of which are satisfied by supposing that @, 7 are small arbitrary constants, and
therefore A = 0.

In the latter case the equilibrium-state defined by @ = 0, ¥ = 0 is not the only
condition of relative equilibrium, but any other configuration of the system in the
neighbourhood of this one will also form a configuration of relative equilibrium.

Let us now consider the nature of the iimiting forms of the forced oscillations
when the period is indefinitely prolonged. In the former case we must suppose that
the disturbing forces are such that they do no work when the coordinate « is varied,
so that X = 0, as otherwise the stability of the system will be destroyed; the
equations of motion for the forced oscillations then hecome

A — wthy = 0,
— Ny 4+ out my =Y ;

whence
’ Yo
=)= w® + (i’ — A7)
and in the limit
Yo _ Y
"= +m2’y—m~ + @

The velocity-component u will therefore always remain of the same order as the
disturbing force Y, while the amplitude of vibration of the coordinate 2 will tend to

increase without limit.
In the latter case the equations of disturbed motion may be written

N — v = X
w4 ou=Y
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whence in the limiting case
=Yoo, v=-—Xo

Hence both the velocity-components tend to finite limits while the amplitudes of
vibration of both coordinates increase without limit.

The essential characteristics of both cases are (i) that one or more of the generalized
coordinates does not appear explicitly in the equations of motion but only the
corresponding velocity-component, and hence (ii) that A= 0 is one root of the
frequency-equation for the free modes of vibration, from which it follows that
(a) either free steady motions relatively to the rotating system are possible, or
(B) that the configuration of relative equilibrium defined by x =10, y =0 is not
isolated. The two conditions (a), (8) may both be expressed by stating that the
steady motion defined by @ = 0, ¥ = 0 is not the only form of steady motion of which
the system is capable.

The two cases are both illustrated by our problem. For if we suppose the waters
of the ocean displaced horizontally in such a manner that the form of the surface is
unaltered, we shall evidently obtain a new configuration of relative equilibrium, while,
as we shall see in the next section, if we suppose that the fluid is in relative motion
in such a manner that the fluid particles are moving along parallels of latitude, it is
possible by a proper adjustment of the free surface to ensure that such a motion should
be permanent.

The coordinates which depend on the horizontal displacements alone are analogous
to the coordinate x in the former of the illustrations we have given above, and to the
coordinates x, ¥ in the latter. They do not appear explicitly in the equations of
motion, but only through the corresponding velocity-components. We conclude, then,
that the horizontal velocities will be ol the order of the disturbing forces, whereas the
horizontal excursions of the fluid particles will tend to increase without limit as the
period is prolonged.

By way of explaining how these circumstances may arise physically, let us suppose
for the moment that X is actually zero, and consequently that the disturbing force is
constant. In the case of a system oscillating about a position of equilibrium, the
introduction of a constant disturbing force will have the effect of slightly changing
the configuration about which oscillations corresponding with the free modes of
vibration take place. Suppose now that a disturbing force, such as that which gives
rise to the long-period tides, tending to increase the surface-ellipticity of the ocean,
is suddenly applied to our rotating system when in a configuration of relative equi-
librium. It will immediately set up oscillations, the initial motion being such that
each particle will tend towards the position in which it would be in equilibrium under
the new disturbing influence. The new position of equilibrium is such that in it there
will be more water in equatorial regions, and less water in polar regions, than in the
old. Thus the initial motion involves a flow of water directed from the poles towards
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the equator. The water however coming from higher latitudes into lower will reach
these lower latitudes with an amount of rotation less than that which is appropriate
for these latitudes if the whole were in a state of steady motion as a rigid body.
There are no forces acting which tend to modify the angular momentum about the
polar axis of an elementary ring of water, which coincides with a parallel of latitude,
and consequently currents will be started, in virtue of which each particle of fluid
will move along a parallel of latitude from east to west. The effect of the disturbing
force is therefore to modify-the state of steady motion about which the free oscilla-
tions take place from a uniform rotation of the whole system as a rigid body to a state
in which there exist horizontal westerly currents. If, as is usual in dealing with
forced oscillations, we suppose the free oscillations to be annulled, we see that the
“forced oscillation ” arising from such a constant disturbance as we have been con-
sidering will be of the nature of a steady motion relatively to the rotating earth,
consisting of a westerly flow of' the whole ocean, the velocity however varying with
the latitude.

In the case of a periodic disturbance of very long period, the motion set up at any
instant will be of like character, provided that the viscosity of the fluid is not
sufficient to sensibly affect the currents in question in the course of a single period.
An equilibrium-theory will only be applicable when the rate of dissipation of such
motions is so rapid that they practically disappear in a time which is short compared
with the period of the disturbing force. Now in an ocean whose depth is equal
to the mean depth of the actual ocean, it seems highly improbable that such
currents would be appreciably affected by viscosity in the course of a few months.
Hence it appears that the present theory in which the effects of viscosity are totally
disregarded will almost certainly give a far better representation of the lunar long-
period tides than the equilibrium theory, and most probably also of the long- perlod
solar tides.

§ 14. Free Steady Motions.

In the last section we have called attention to the fact that free oscillations of
infinite period are possible, or that the system with which we are concerned is
capable of free steady motions. We proceed in the present section to examine the
nature of these steady motions.

Referring back to §§ 2—4, we see that the general equations of motion of the ocean
when free from external disturbing influence, and at the same time supposed steady,
so that A = 0, can be expressed in the form

MDCCCXCVII.—A., 2 K
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o 10 o ? BV AR
o0 — T a[a,w WA —=p)h U+ ) {\/(1 —#2)”’
U b
2w0ap / (1 — p?) 09’ Lo L (34)
vy = Vad=mM '
- 2wap a,u, ’
Y= v - gC J

where, as there is no longer any ambiguity, we have omitted the bars from the
symbols U, V, 4, v".

Since 0f/ot = 0 when the motion is steady, we see that the first equation is
identically satisfied if we suppose %, s both independent of ¢. In this case we may
take :

(=3SCP(w) . . . . . . . . . . (3%),

where the coﬁstants C, are arbitrary, and deduce

‘!’ = - 2 gﬂzCuPn (IL) 5

whence

_ VA =p P,
V=Yg G (0)

The last equation gives the velocity which must be imposed on the particles of
water in latitude sin™'p in order that the free surface may be maintained in the form
defined by (35) without any external force. =~ We see that it is theoretically possible
to maintain an arbitrary surface-form by correctly distributing the longitudinal
velocities of the fluid particles. If however the series (85) involves harmonies of
odd order the value of V given by (86) becomes infinite at the equator, and to
prevent a flow of liquid across the equator it would be necessary to impose an
infinite velocity on the particles of water there. Hence, if the water extend either
wholly or partially over both hemispheres, the distribution of velocity and the form
of free surface must be symmetrical with respect to the equator, at least so far as
concerns that part of the ocean which communicates across the equator.

Conversely, any arbitrary initial distribution of longitudinal velocity symmetrical
with respect to the equator may be rendered permanent by an appropriate adjust-
ment of the free surface. These results hold good whatsoever be the law of depth,
provided it be a function of the latitude alone.

If ¥ be not supposed independent of ¢, we see from the second and third of
equations (84) that the velocity of flow across any element ds inclined at an angle x
to the meridian is
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U sin y — V cos y,

1 1

=”§;'{Sllx N ﬂ)a\(;'l'cos)(\/(l_l"z)aﬂ}
1 Oy
2w,u, 0s’

Hence, if 0y/0s = 0, there will be no flow across the element ds. It follows that
the function { may be regarded as a stream-function, the paths of the particles of
water always coinciding with the lines

A A

Y = const.

But from the equation of continuity we have, on putting 0{/ot = 0, and replacing
U, V by their values in terms of v,

_ (2

o / L\ o [h\oYy _
e ) o6~ 2 ) =

the general solution of which is

SOCIETY

or

OF

$=FGlp) . . . . . .. (3D),

where f (h/p) denotes an arbitrary function of A/p.
It follows that the stream-lines ¥ = const coincide in direction with the lines

hljp=wconst . . . . . . . . . . (38)

Thus, if the depth be a function of the latitude alone, the stream-lines must necessarily
coincide with the parallels of latitude, and the only forms of steady motion possible
are those in which the water has no latitudinal velocity. In the more general case,
the stream-lines of the possible steady motions are given by the equation (38), and
from this equation they might at once be traced out on a chart if we had a sufficient
knowledge of the depth of the ocean in different parts. In particular, whatever be
the law of depth, the equator will be one of the free stream-lines corresponding to an
infinite value of /u, while the shores will also be stream-lines corresponding to zero
values of this expression. An infinite number of stream-lines will converge towards
those points where the coast-line intersects the equator, and it is only by passing
through one of these points that a particle of water could pass from the northern to
the southern hemisphere, or vice versd. As however the velocities at these particular
points tend to become infinite, the equations which we have used which involve the
neglect of the squares of the velocities will not be applicable to the region immediately

2K 2
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surrounding the points in question. It seems most probable that the inclusion of the
terms involving the squares of velocities would have the effect of diverting the stream-
lines, so as to cause them to follow the coast-lines even in the immediate neighbour-
hood of the equator.

An attempt to trace out the lines 2/u = const for the North Atlantic Ocean from
data obtainable from the Admiralty charts quickly showed that the theory here put
forward is inadequate in itself to explain even the more salient features of the
circulation in the vegion in question. Observation however indicates the direction
in which we must look for the defects of this theory. The excessively low tempera-
ture of the water beneath the surface™ in equatorial regions can only be explained
by supposing that this water has travelled thither from higher latitudes, whereas we
know that the currents at the surface, for the most part, set from the equator towards
the poles. We conclude that the under-currents of the actual ocean differ materially
from the surface-currents, and in this respect the actual circulation differs from the
types of circulation with which we have hitherto been concerned and which are the
only possible types of circulation in our ideal ocean in which the density is uniform.
It has been urged by some authorities that the variations in the density of the water
arising from differences of temperature, salinity, &c., are the sole causes which
maintain ocean currents, but in that we have seen that currents could exist even
without such variations, it seems to me to be highly improbable that such is the
case, though there can be no doubt, in the light of our present analysis, that these
variations are largely effective in determining the course which the currents pursue.

If we suppose that the ocean consists of a number of horizontal layers of different
densities, but that the density throughout each stratum is uniform, then for each of
the strata a function  will exist defined by

y=V + % w2(w2 -+ yé) - J; - const,

and the horizontal velocities for any stratum will be connected with the corresponding
function by the equations (84). The equation of continuity for any stratum may be
formed as in § 3, provided we replace & by the depth of the stratum in question
instead of the depth of the whole ocean. The stream-lines for any stratum will
therefore still be given by the equation (38), with this modification in the meaning
of the symbol . It follows that the equator will still be one of the free stream-
lines, but the motion elsewhere may be totally different from what it wounld be if the
density were the same throughout. It seems probable then that the result we have
obtained with reference to the tendency of the currents to set along the equator will
still hold good even when the density is variable, and this conclusion is borne out by

* The principal facts at present known in relation to the distribution of temperature in the ocean
will be found in the ¢ Report of the Challenger Scientific Results,” ¢ Chemistry and Physics,” vol. 1.
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observation, it being noticeable at a glance at the Admiralty current charts that
there is no tendency to cross the equator except in the immediate neighbourhood of
the coasts.

The rigorous treatment of the problem of ocean currents, as affected by variations
in the density of the water, appears to be hopelessly beyond the powers of mathe-
matical analysis, and I will therefore leave the subject with the brief indications
already given in this section, and will conclude the paper with an example illus-
trating another means by which possibly ocean currents are in part maintained, and
which is instructive in showing the very important part played by the rotation of
the earth in rendering effective a cause which otherwise could give rise to no
sensible currents.

§ 15. On Currents due to Evaporation and Precipitation.

A cause which has been advocated * in explanation of ocean currents is the
fact that in equatorial regions the amount of water evaporated into the atmosphere
largely exceeds that precipitated in the form of rain in these regions. The excess of
water in the atmosphere is carried away to be precipitated in temperate and polar
regions, thereby giving rise to an excess of precipitation over evaporation in the
latter regions. It has been urged with some reason that, as the actual amount
of water in equatorial regions does not diminish nor that in polar regions increase
from year to year, there must be a continual flow of water from the poles towards
the equator. The fact that this flow of water is in the opposite direction to
that observed at the surface, which for the most part sets from the equator towards
the poles, is explained by attributing the counterflow to undercurrents. If however
we subject the question to the test of mathematical analysis, we shall find that
though such a flow towards the equator must necessarily exist, it is so slow as to be
completely masked by larger currents due to other causes. The flow in question
will however give rise indirectly, in consequence of the rotation, to currents which
in the absence of dissipative forces would tend to increase without limit. The
explanation of this fact will be obvious after the discussions of § 11.

The effects of evaporation and precipitation may be conveniently represented
mathematically by an appropriate distribution of sources and sinks over the free
surface. This will modify the surface-conditions at the free surface but will not

interfere with the dynamical equations. Instead of equating W to 9{/d¢ we must

replace it by a certain function of the position on the surface, independent of
the time, but depending on the rate of evaporation and precipitation at the place,

* See an Article by Procror in ¢St. Paul’s Magazine, Sept,, 1869, reprinted in ‘Light Science’
(1st series), p. 114.


http://rsta.royalsocietypublishing.org/

A A

I ¥

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Vo

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

254 MR. 8. S. HOUGH ON THE APPLICATION OF HARMONIC

which over sufficiently long intervals of time we may regard as uniform. A simple
law which will serve for purposes of illustration may be chosen as follows :—

W = — aP, (u).

The equations with which we have to deal will then be

oU 1—pd)o h

,_+2WV:\/( : M)a%

ov 1 o

el — 20pU = a\/(l-—/ﬂ) o > . (39),
1 A%

By (1) = [ 0 =) W0} + 5 { s ] |

where, if we neglect the attraction due to the surface-inequalities, we may take

Yy = — gl

To obtain a particular solution of these equations suppose
p=—gl=—g(L+ &), U=U,+Uyp V=V, +Vy,

where {y, {;, &ec., are all independent of .
Substituting these expressions in the equations (39), and equating coeflicients of ¢,
we find

2opV, = — L0/(1 — #2)%

20pU, = L0/(1 — ) 50 agl
o=y [ tva- “2) 0+ 5 (et ) )

If 7 be a function of u alone, these will be satisfied by

_ /(L —p) 3k
Uy=0, V,=~- 20w o’

provided ¢, be also a function of u alone.
Next, if we equate the terms independent of ¢ in the two members of (39), we

obtaln

ao

U+ 20uVo= — L /(1 = p) § &

ba — l 1 %

Vi 2ol = = D =) 09 |
’ 1To 0 LV,
) = [ (V=0 st )
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Suppose the system starts from rest in its position of relative equilibrium, so that
{=0whent=0,0r {;,=0. Then
U, + 20pV,= 0
Vi —20pU, =0,

whence,
— U _
VO — 2(0# — O
U= — _ g VA =p)ok ,
_ T 204 T 4o T Op
and therefore ;
_ Y _a_ (1 —p) 2o
“Po(W) = = L O { W ?m} '
The last equation gives |
(1 — pu?) b 0¢ 4oa?
S = = S [Py () dp
_ do’a® pP —p
= - g o 9 5

no arbitrary constant being added, since both sides vanish when p = 4 1. Thus,

—_— al.“’

or

Choosing the constant so that the mean value of {, over the surface is zero, we
obtain finally

ol

{35 P, + ¢ B3}

- 1
gl"—Z g]b

Hence the particular solutions of the differential equations which repreéent the
“ forced ” motion due to the disturbing influence in question are
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o alat

2

U=U,+ Up= -1 on /(1 —p),

adwl

V=V V= = = ),

We see then that the effects of evaporation and precipitation will be to cause a
steady flow of water, not by means of undercurrents only, but by currents sensibly
uniform throughout the depth, towards the equator; in addition to these currents
the cause in question will give rise to longitudinal currents, not of a steady character,
but increasing uniformly with the time, and these will be accompanied by an appro-
priate continuous deformation of the free surface. Were it not for viscosity these
currents would increase without limit and ultimately endanger the stability of the
system, but under the action of dissipative forces a steady state must ultimately be
attained, in which the rate at which the currents are generated exactly balances that
at which they are destroyed. Thus, suppose the type of motion set up is such that
if left to itself it would be reduced in the ratio 1:e in a period 7. If U denote
the velocity of any particle, the law of variation of U under the influence of viscous
forces is then

oU/ot 4+ U/r = 0,
whereas, if there be no viscosity and the system is subjected to such a disturbance as
we have been dealing with, the velocity varies according to the law

oU/ot = f,

where fis constant. Equating the rate of increase of the velocity without viscosity
to the rate of decrease under the influence of dissipative force, we find that the
ultimate state is defined by

Ur=f, or U=fr

Thus, if the disturbing influence tends to set up one of the possible types of motion
of which the system is capable under viscosity, the ultimate velocity of any particle
will be that which it would acquire in a period equal to the modulus of decay of the
type of motion in question. '

By way of numerical illustration, take a year as the unit of time and an inch as
the unit of length, and suppose & = 40. This will imply an annual rainfall at the
poles which exceeds evaporation by 40 inches, and an annual rainfall at the equator
which is less than evaporation by 20 inches. Further, suppose h/a = 3% Then

U= —1 X 2890 X 40 /(1 — ).

U will be numerically greatest when p? = 4, or in latitude 45° and the
greatest value of U is 28,900. The maximum latitudinal velocity will therefore
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amount to 28,900 inches, or about half-a-mile, per annum. This velocity will be quite
inappreciable to observation.

The amount of longitudinal velocity generated in the course of a year in any
latitude is given by the formula

aldw
AL = ),

This will be greatest when p® = £, that is, in latitude 55° nearly, and its greatest
value corresponds to a velocity of about § of a mile per hour. The maximum
current velocity due to this cause would therefore amount to about four miles per
hour if the modulus of decay is as long as 20 years.

The most crucial test to which we can subject the theory of ocean currents here
put forward will consist in the evalnation of the moduli of decay for the types ot
motion concerned. This I have endeavoured to do, but as the work involves
analytical considerations of a somewhat different character from those which occur
in the present work, I have deemed it advisable to present the results in a separate
paper.™ These results, so far as they are applicable, seem to point to a modulus of
decay far in excess of the 20 years here required, but the mathematical difficulties
have compelled me, in dealing with friction, to leave the rotation entirely out of
account. It appears that in the simpler system so treated, the types of free current
motion are far more arbitrary in character than those at which we have arrived by
including the rotation. This arises from the fact that our rotating system will be
capable of a large number of free oscillatory motions besides those which we have
examined in which the periods of oscillation always bear a finite ratio to the period
of rotation. As the period of rotation is lengthened, the period of each of these
types of oscillation is prolonged, and the possible forms of steady motion where
there is no rotation must include the limiting forms of each of these types of
oscillatory motion.

The moduli of decay of the free current motions when there is rotation may
therefore be very different in value from those obtained in the paper referred to, but
it does not seem to me that they could be much less in order of magnitude than the
moduli of decay of the principal types of free oscillation. If this prove to be the case,
the estimate of 20 years, which we have taken for the modulus of decay, will not be
so excessive as might at first sight appear.

Of course, if the water does not cover the whole earth, or if the depth be not
uniform, the currents due to the rotation will follow the free stream-lines defined by
equation (38) instead of following the parallels of latitude. The rotation will, no
doubt, produce its maximum effect when the stream-lines in question coincide with
the parallels of latitude, but this circumstance does not alter our main conclusion ag
to the adequacy of evaporation and other such causes to generate currents quite
comparable with those known to exist in the ocean.

* Read before the London Mathematical Society, December 10th, 1896.
MDOCCXCVIL——A, 2 L
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